《高考數(shù)學(xué) 一輪復(fù)習(xí)學(xué)案訓(xùn)練課件北師大版理科: 課時(shí)分層訓(xùn)練9 對(duì)數(shù)與對(duì)數(shù)函數(shù) 理 北師大版》由會(huì)員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué) 一輪復(fù)習(xí)學(xué)案訓(xùn)練課件北師大版理科: 課時(shí)分層訓(xùn)練9 對(duì)數(shù)與對(duì)數(shù)函數(shù) 理 北師大版(5頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、 課時(shí)分層訓(xùn)練(九)對(duì)數(shù)與對(duì)數(shù)函數(shù)A組基礎(chǔ)達(dá)標(biāo)一、選擇題1函數(shù)f(x)的定義域是() 【導(dǎo)學(xué)號(hào):79140051】A(3,0)B(3,0C(,3)(0,)D(,3)(3,0)A因?yàn)閒(x),所以要使函數(shù)f(x)有意義,需使即3x0.2(20xx·石家莊模擬)已知alog23log2,blog29log2,clog32,則a,b,c的大小關(guān)系是()AabcBabcCabcDabcB因?yàn)閍log23log2log23log231,blog29log2log23a,clog32log331,所以abc.3若函數(shù)ylogax(a0,且a1)的圖像如圖263所示,則下列
2、函數(shù)圖像正確的是()圖263B由題圖可知ylogax的圖像過點(diǎn)(3,1),所以loga31,即a3.A項(xiàng),y3x在R上為減函數(shù),錯(cuò)誤;B項(xiàng),yx3符合;C項(xiàng),y(x)3x3在R上為減函數(shù),錯(cuò)誤;D項(xiàng),ylog3(x)在(,0)上為減函數(shù),錯(cuò)誤4已知f(x)是定義在R上的奇函數(shù),當(dāng)x0時(shí),f(x)3xm(m為常數(shù)),則f(log35)的值為()A4B4C6D6B函數(shù)f(x)是定義在R上的奇函數(shù),f(0)0,即30m0,解得m1,f(log35)314,f(log35)f(log35)4.5已知yloga(2ax)在區(qū)間0,1上是減函數(shù),則a的取值范圍是()A(0,1)B(
3、0,2)C(1,2)D2,)C因?yàn)閥loga(2ax)在0,1上單調(diào)遞減,u2ax(a0)在0,1上是減函數(shù),所以ylogau是增函數(shù),所以a1.又2a0,所以1a2.二、填空題6計(jì)算:lg 0.001ln2_. 【導(dǎo)學(xué)號(hào):79140052】1原式lg 103ln e231.7(20xx·陜西質(zhì)檢(一)已知函數(shù)y4ax91(a0且a1)恒過定點(diǎn)A(m,n),則logmn_.由于函數(shù)yax(a0且a1)恒過定點(diǎn)(0,1),故函數(shù)y4ax91(a0且a1)恒過定點(diǎn)(9,3),所以m9,n3,所以logmnlog93.8函數(shù)ylog2|x1|的單調(diào)遞減區(qū)間為_,單調(diào)遞增區(qū)間為_(,1)(1
4、,)作出函數(shù)ylog2x的圖像,將其關(guān)于y軸對(duì)稱得到函數(shù)ylog2|x|的圖像,再將圖像向左平移1個(gè)單位長(zhǎng)度就得到函數(shù)ylog2|x1|的圖像(如圖所示)由圖知,函數(shù)ylog2|x1|的單調(diào)遞減區(qū)間為(,1),單調(diào)遞增區(qū)間為(1,)三、解答題9設(shè)f(x)loga(1x)loga(3x)(a0,a1),且f(1)2.(1)求a的值及f(x)的定義域;(2)求f(x)在區(qū)間上的最大值解(1)f(1)2,loga42(a0,a1),a2.由得x(1,3),函數(shù)f(x)的定義域?yàn)?1,3)(2)f(x)log2(1x)log2(3x)log2(1x)(3x)log2(x1)24,當(dāng)x(1,1時(shí),f(x
5、)是增函數(shù);當(dāng)x(1,3)時(shí),f(x)是減函數(shù),故函數(shù)f(x)在上的最大值是f(1)log242.10已知函數(shù)f(x)是定義在R上的偶函數(shù),f(0)0,當(dāng)x0時(shí),f(x)logx. 【導(dǎo)學(xué)號(hào):79140053】(1)求函數(shù)f(x)的解析式;(2)解不等式f(x21)2.解(1)當(dāng)x0時(shí),x0,則f(x)log(x)因?yàn)楹瘮?shù)f(x)是偶函數(shù),所以f(x)f(x),所以函數(shù)f(x)的解析式為f(x)(2)因?yàn)閒(4)log42,函數(shù)f(x)是偶函數(shù),所以不等式f(x21)2可化為f(|x21|)f(4)又因?yàn)楹瘮?shù)f(x)在(0,)上是減函數(shù),所以|x21|4,解得x,即不等式的解集為(,)B組能力
6、提升11(20xx·北京高考)根據(jù)有關(guān)資料,圍棋狀態(tài)空間復(fù)雜度的上限M約為3361,而可觀測(cè)宇宙中普通物質(zhì)的原子總數(shù)N約為1080.則下列各數(shù)中與最接近的是()(參考數(shù)據(jù):lg 30.48)A1033B1053C1073D1093D由題意,lg lg lg 3361lg 1080361lg 380lg 10361×0.4880×193.28.又lg 103333,lg 105353,lg 107373,lg 109393,故與最接近的是1093.故選D.12設(shè)函數(shù)f(x)定義在實(shí)數(shù)集上,f(2x)f(x),且當(dāng)x1時(shí),f(x)ln x,則有()Aff(2)fBff
7、(2)fCfff(2)Df(2)ffC由f(2x)f(x),得f(1x)f(x1),即函數(shù)f(x)圖像的對(duì)稱軸為直線x1,結(jié)合圖像,可知fff(0)f(2),故選C.13(20xx·浙江高考)已知ab1,若logablogba,abba,則a_,b_. 【導(dǎo)學(xué)號(hào):79140054】42logablogbalogab,logab2或.ab1,logablogaa1,logab,ab2.abba,(b2)bb,b2bb,2bb2,b2,a4.14已知函數(shù)f(x)log2(a為常數(shù))是奇函數(shù)(1)求a的值與函數(shù)f(x)的定義域;(2)若當(dāng)x(1,)時(shí),f(x)log2(x1)m恒成立求實(shí)數(shù)m的取值范圍解(1)因?yàn)楹瘮?shù)f(x)log2是奇函數(shù),所以f(x)f(x),所以log2log2,即log2log2,所以a1,令0,解得x1或x1,所以函數(shù)的定義域?yàn)閤|x1或x1(2)f(x)log2(x1)log2(1x),當(dāng)x1時(shí),x12,所以log2(1x)log221.因?yàn)閤(1,),f(x)log2(x1)m恒成立,所以m1,所以m的取值范圍是(,1