人教版 高中數(shù)學(xué)選修23 2.3.1離散型隨機(jī)變量的均值教案
《人教版 高中數(shù)學(xué)選修23 2.3.1離散型隨機(jī)變量的均值教案》由會(huì)員分享,可在線閱讀,更多相關(guān)《人教版 高中數(shù)學(xué)選修23 2.3.1離散型隨機(jī)變量的均值教案(10頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、人教版高中數(shù)學(xué)精品資料 2.3.1離散型隨機(jī)變量的均值 教學(xué)目標(biāo): 知識(shí)與技能:了解離散型隨機(jī)變量的均值或期望的意義,會(huì)根據(jù)離散型隨機(jī)變量的分布列求出均值或期望. 過(guò)程與方法:理解公式“E(aξ+b)=aEξ+b”,以及“若ξB(n,p),則Eξ=np”.能熟 練地應(yīng)用它們求相應(yīng)的離散型隨機(jī)變量的均值或期望。 情感、態(tài)度與價(jià)值觀:承前啟后,感悟數(shù)學(xué)與生活的和諧之美 ,體現(xiàn)數(shù)學(xué)的文化功能與人文 價(jià)值。 教學(xué)重點(diǎn):離散型隨機(jī)變量的均值或期望的概念 教學(xué)難點(diǎn):根據(jù)離散型隨機(jī)變量的分布列求出均值或期望 授課類(lèi)型:新授課 課時(shí)安排:2課時(shí) 教 具:多媒體、實(shí)物投影儀
2、 教學(xué)過(guò)程: 一、復(fù)習(xí)引入: 1.隨機(jī)變量:如果隨機(jī)試驗(yàn)的結(jié)果可以用一個(gè)變量來(lái)表示,那么這樣的變量叫做隨機(jī)變量 隨機(jī)變量常用希臘字母ξ、η等表示 2. 離散型隨機(jī)變量:對(duì)于隨機(jī)變量可能取的值,可以按一定次序一一列出,這樣的隨機(jī)變量叫做離散型隨機(jī)變量 3.連續(xù)型隨機(jī)變量: 對(duì)于隨機(jī)變量可能取的值,可以取某一區(qū)間內(nèi)的一切值,這樣的變量就叫做連續(xù)型隨機(jī)變量 4.離散型隨機(jī)變量與連續(xù)型隨機(jī)變量的區(qū)別與聯(lián)系: 離散型隨機(jī)變量與連續(xù)型隨機(jī)變量都是用變量表示隨機(jī)試驗(yàn)的結(jié)果;但是離散型隨機(jī)變量的結(jié)果可以按一定次序一一列出,而連續(xù)性隨機(jī)變量的結(jié)果不可以一一列出 若是隨機(jī)變量,是常
3、數(shù),則也是隨機(jī)變量 并且不改變其屬性(離散型、連續(xù)型) 5. 分布列:設(shè)離散型隨機(jī)變量ξ可能取得值為x1,x2,…,x3,…, ξ取每一個(gè)值xi(i=1,2,…)的概率為,則稱(chēng)表 ξ x1 x2 … xi … P P1 P2 … Pi … 為隨機(jī)變量ξ的概率分布,簡(jiǎn)稱(chēng)ξ的分布列 6. 分布列的兩個(gè)性質(zhì): ⑴Pi≥0,i=1,2,…; ⑵P1+P2+…=1. 7.離散型隨機(jī)變量的二項(xiàng)分布:在一次隨機(jī)試驗(yàn)中,某事件可能發(fā)生也可能不發(fā)生,在n次獨(dú)立重復(fù)試驗(yàn)中這個(gè)事件發(fā)生的次數(shù)ξ是一個(gè)隨機(jī)變量.如果在一次試驗(yàn)中某事件發(fā)生的概率是P,那么在n次獨(dú)立重復(fù)試驗(yàn)中
4、這個(gè)事件恰好發(fā)生k次的概率是 ,(k=0,1,2,…,n,). 于是得到隨機(jī)變量ξ的概率分布如下: ξ 0 1 … k … n P … … 稱(chēng)這樣的隨機(jī)變量ξ服從二項(xiàng)分布,記作ξ~B(n,p),其中n,p為參數(shù),并記=b(k;n,p). 8. 離散型隨機(jī)變量的幾何分布:在獨(dú)立重復(fù)試驗(yàn)中,某事件第一次發(fā)生時(shí),所作試驗(yàn)的次數(shù)ξ也是一個(gè)正整數(shù)的離散型隨機(jī)變量.“”表示在第k次獨(dú)立重復(fù)試驗(yàn)時(shí)事件第一次發(fā)生.如果把k次試驗(yàn)時(shí)事件A發(fā)生記為、事件A不發(fā)生記為,P()=p,P()=q(q=1-p),那么 (k=0,1,2,…, ).于是得到隨機(jī)變量ξ的概率分布如
5、下: ξ 1 2 3 … k … P … … 稱(chēng)這樣的隨機(jī)變量ξ服從幾何分布 記作g(k,p)= ,其中k=0,1,2,…, . 二、講解新課: 根據(jù)已知隨機(jī)變量的分布列,我們可以方便的得出隨機(jī)變量的某些制定的概率,但分布列的用途遠(yuǎn)不止于此,例如:已知某射手射擊所得環(huán)數(shù)ξ的分布列如下 ξ 4 5 6 7 8 9 10 P 0.02 0.04 0.06 0.09 0.28 0.29 0.22 在n次射擊之前,可以根據(jù)這個(gè)分布列估計(jì)n次射擊的平均環(huán)數(shù).這就是我們今天要學(xué)習(xí)的離散型隨機(jī)變量的均值或期望 根據(jù)射手射擊所得
6、環(huán)數(shù)ξ的分布列, 我們可以估計(jì),在n次射擊中,預(yù)計(jì)大約有 次得4環(huán); 次得5環(huán); ………… 次得10環(huán). 故在n次射擊的總環(huán)數(shù)大約為 , 從而,預(yù)計(jì)n次射擊的平均環(huán)數(shù)約為 . 這是一個(gè)由射手射擊所得環(huán)數(shù)的分布列得到的,只與射擊環(huán)數(shù)的可能取值及其相應(yīng)的概率有關(guān)的常數(shù),它反映了射手射擊的平均水平. 對(duì)于任一射手,若已知其射擊所得環(huán)數(shù)ξ的分布列,即已知各個(gè)(i=0,1,2,…,10),我們可以同樣預(yù)計(jì)他任意n次射擊的平均環(huán)數(shù): …. 1. 均值或數(shù)學(xué)期望: 一般地,若離散型隨機(jī)變量ξ的概率分布為 ξ x1 x2 … xn … P p
7、1 p2 … pn … 則稱(chēng) …… 為ξ的均值或數(shù)學(xué)期望,簡(jiǎn)稱(chēng)期望. 2. 均值或數(shù)學(xué)期望是離散型隨機(jī)變量的一個(gè)特征數(shù),它反映了離散型隨機(jī)變量取值的平均水平 3. 平均數(shù)、均值:一般地,在有限取值離散型隨機(jī)變量ξ的概率分布中,令…,則有…,…,所以ξ的數(shù)學(xué)期望又稱(chēng)為平均數(shù)、均值 4. 均值或期望的一個(gè)性質(zhì):若(a、b是常數(shù)),ξ是隨機(jī)變量,則η也是隨機(jī)變量,它們的分布列為 ξ x1 x2 … xn … η … … P p1 p2 … pn … 于是…… =……)……) =, 由此,我們得到了
8、期望的一個(gè)性質(zhì): 5.若ξB(n,p),則Eξ=np 證明如下: ∵ , ∴ 0×+1×+2×+…+k×+…+n×. 又∵ , ∴ ++…++…+. 故 若ξ~B(n,p),則np. 三、講解范例: 例1. 籃球運(yùn)動(dòng)員在比賽中每次罰球命中得1分,罰不中得0分,已知他命中的概率為0.7,求他罰球一次得分的期望 解:因?yàn)椋? 所以 例2. 一次單元測(cè)驗(yàn)由20個(gè)選擇題構(gòu)成,每個(gè)選擇題有4個(gè)選項(xiàng),其中有且僅有一個(gè)選項(xiàng)是正確答案,每題選擇正確答案得5分,不作出選擇或選錯(cuò)不得分,滿分100分 學(xué)生甲選對(duì)任一題的概率為0.9
9、,學(xué)生乙則在測(cè)驗(yàn)中對(duì)每題都從4個(gè)選擇中隨機(jī)地選擇一個(gè),求學(xué)生甲和乙在這次英語(yǔ)單元測(cè)驗(yàn)中的成績(jī)的期望 解:設(shè)學(xué)生甲和乙在這次英語(yǔ)測(cè)驗(yàn)中正確答案的選擇題個(gè)數(shù)分別是,則~ B(20,0.9),, 由于答對(duì)每題得5分,學(xué)生甲和乙在這次英語(yǔ)測(cè)驗(yàn)中的成績(jī)分別是5和5 所以,他們?cè)跍y(cè)驗(yàn)中的成績(jī)的期望分別是: 例3. 根據(jù)氣象預(yù)報(bào),某地區(qū)近期有小洪水的概率為0.25,有大洪水的概率為0. 01.該地區(qū)某工地上有一臺(tái)大型設(shè)備,遇到大洪水時(shí)要損失60 000元,遇到小洪水時(shí)要損失10000元.為保護(hù)設(shè)備,有以下3 種方案: 方案1:運(yùn)走設(shè)備,搬運(yùn)費(fèi)為3 800 元. 方案2:建保護(hù)圍墻,
10、建設(shè)費(fèi)為2 000 元.但圍墻只能防小洪水. 方案3:不采取措施,希望不發(fā)生洪水. 試比較哪一種方案好. 解:用X1 、X2和X3分別表示三種方案的損失. 采用第1種方案,無(wú)論有無(wú)洪水,都損失3 800 元,即 X1 = 3 800 . 采用第2 種方案,遇到大洪水時(shí),損失2 000 + 60 000=62 000 元;沒(méi)有大洪水時(shí),損失2 000 元,即 同樣,采用第 3 種方案,有 于是, EX1=3 800 , EX2=62 000×P (X2 = 62 000 ) + 2 00000×P (X2 = 2 000 ) = 6200
11、0×0. 01 + 2000×(1-0.01) = 2 600 , EX3 = 60000×P (X3 = 60000) + 10 000×P(X3 =10 000 ) + 0×P (X3 =0) = 60 000×0.01 + 10000×0.25=3100 . 采取方案2的平均損失最小,所以可以選擇方案2 . 值得注意的是,上述結(jié)論是通過(guò)比較“平均損失”而得出的.一般地,我們可以這樣來(lái)理解“平均損失”:假設(shè)問(wèn)題中的氣象情況多次發(fā)生,那么采用方案 2 將會(huì)使損失減到最?。捎诤樗欠癜l(fā)生以及洪水發(fā)生的大小都
12、是隨機(jī)的,所以對(duì)于個(gè)別的一次決策,采用方案 2 也不一定是最好的. 例4.隨機(jī)拋擲一枚骰子,求所得骰子點(diǎn)數(shù)的期望 解:∵, =3.5 例5.有一批數(shù)量很大的產(chǎn)品,其次品率是15%,對(duì)這批產(chǎn)品進(jìn)行抽查,每次抽取1件,如果抽出次品,則抽查終止,否則繼續(xù)抽查,直到抽出次品為止,但抽查次數(shù)不超過(guò)10次求抽查次數(shù)的期望(結(jié)果保留三個(gè)有效數(shù)字) 解:抽查次數(shù)取110的整數(shù),從這批數(shù)量很大的產(chǎn)品中抽出1件檢查的試驗(yàn)可以認(rèn)為是彼此獨(dú)立的,取出次品的概率是0.15,取出正品的概率是0.85,前次取出正品而第次(=1,2,…,10)取出次品的概率: (=1,2,…,10) 需要抽查10次即前9次取出
13、的都是正品的概率:由此可得的概率分布如下: 1 2 3 4 5 6 7 8 9 10 0.15 0.1275 0.1084 0.092 0.0783 0.0666 0.0566 0.0481 0.0409 0.2316 根據(jù)以上的概率分布,可得的期望 例6.隨機(jī)的拋擲一個(gè)骰子,求所得骰子的點(diǎn)數(shù)ξ的數(shù)學(xué)期望. 解:拋擲骰子所得點(diǎn)數(shù)ξ的概率分布為 ξ 1 2 3 4 5 6 P 所以 1×+2×+3×+4×+5×+6× =(1+
14、2+3+4+5+6)×=3.5. 拋擲骰子所得點(diǎn)數(shù)ξ的數(shù)學(xué)期望,就是ξ的所有可能取值的平均值. 例7.某城市出租汽車(chē)的起步價(jià)為10元,行駛路程不超出4km時(shí)租車(chē)費(fèi)為10元,若行駛路程超出4km,則按每超出lkm加收2元計(jì)費(fèi)(超出不足lkm的部分按lkm計(jì)).從這個(gè)城市的民航機(jī)場(chǎng)到某賓館的路程為15km.某司機(jī)經(jīng)常駕車(chē)在機(jī)場(chǎng)與此賓館之間接送旅客,由于行車(chē)路線的不同以及途中停車(chē)時(shí)間要轉(zhuǎn)換成行車(chē)路程(這個(gè)城市規(guī)定,每停車(chē)5分鐘按lkm路程計(jì)費(fèi)),這個(gè)司機(jī)一次接送旅客的行車(chē)路程ξ是一個(gè)隨機(jī)變量.設(shè)他所收租車(chē)費(fèi)為η (Ⅰ)求租車(chē)費(fèi)η關(guān)于行車(chē)路程ξ的關(guān)系式; (Ⅱ)若隨機(jī)變量ξ的分布列為
15、 ξ 15 16 17 18 P 0.1 0.5 0.3 0.1 求所收租車(chē)費(fèi)η的數(shù)學(xué)期望. (Ⅲ)已知某旅客實(shí)付租車(chē)費(fèi)38元,而出租汽車(chē)實(shí)際行駛了15km,問(wèn)出租車(chē)在途中因故停車(chē)?yán)塾?jì)最多幾分鐘? 解:(Ⅰ)依題意得 η=2(ξ-4)十10,即 η=2ξ+2; (Ⅱ) ∵ η=2ξ+2 ∴ 2Eξ+2=34.8 (元) 故所收租車(chē)費(fèi)η的數(shù)學(xué)期望為34.8元. (Ⅲ)由38=2ξ+2,得ξ=18,5(18-15)=15 所以出租車(chē)在途中因故停車(chē)?yán)塾?jì)最多15分鐘 四、課堂練習(xí): 1. 口袋中有5只球,編號(hào)為1,2,3,4,5,從中任取3球
16、,以表示取出球的最大號(hào)碼,則( ) A.4; B.5; C.4.5; D.4.75 答案:C 2. 籃球運(yùn)動(dòng)員在比賽中每次罰球命中的1分,罰不中得0分.已知某運(yùn)動(dòng)員罰球命中的概率為0.7,求 ⑴他罰球1次的得分ξ的數(shù)學(xué)期望; ⑵他罰球2次的得分η的數(shù)學(xué)期望; ⑶他罰球3次的得分ξ的數(shù)學(xué)期望. 解:⑴因?yàn)?,,所? 1×+0× ⑵η的概率分布為 η 0 1 2 P 所以 0×+1×+2×=1.4. ⑶ξ的概率分布為 ξ 0 1 2 3 P
17、 所以 0×+1×+2×=2.1. 3.設(shè)有m升水,其中含有大腸桿菌n個(gè).今取水1升進(jìn)行化驗(yàn),設(shè)其中含有大腸桿菌的個(gè)數(shù)為ξ,求ξ的數(shù)學(xué)期望. 分析:任取1升水,此升水中含一個(gè)大腸桿菌的概率是,事件“ξ=k”發(fā)生,即n個(gè)大腸桿菌中恰有k個(gè)在此升水中,由n次獨(dú)立重復(fù)實(shí)驗(yàn)中事件A(在此升水中含一個(gè)大腸桿菌)恰好發(fā)生k次的概率計(jì)算方法可求出P(ξ=k),進(jìn)而可求Eξ. 解:記事件A:“在所取的1升水中含一個(gè)大腸桿菌”,則P(A)=. ∴ P(ξ=k)=Pn(k)=C)k(1-)n-k(k=0,1,2,….,n). ∴ ξ~B(n,),故 Eξ
18、 =n×= 五、小結(jié) :(1)離散型隨機(jī)變量的期望,反映了隨機(jī)變量取值的平均水平; (2)求離散型隨機(jī)變量ξ的期望的基本步驟:①理解ξ的意義,寫(xiě)出ξ可能取的全部值;②求ξ取各個(gè)值的概率,寫(xiě)出分布列;③根據(jù)分布列,由期望的定義求出Eξ 公式E(aξ+b)= aEξ+b,以及服從二項(xiàng)分布的隨機(jī)變量的期望Eξ=np 六、課后作業(yè):P64-65練習(xí)1,2,3,4 P69 A組1,2,3 1.一袋子里裝有大小相同的3個(gè)紅球和兩個(gè)黃球,從中同時(shí)取出2個(gè),則其中含紅球個(gè)數(shù)的數(shù)學(xué)期望是 (用數(shù)字作答) 解:令取取黃球個(gè)數(shù) (=0、1、2)則的要布列為
19、 0 1 2 p 于是 E()=0×+1×+2×=0.8 故知紅球個(gè)數(shù)的數(shù)學(xué)期望為1.2 2.袋中有4個(gè)黑球、3個(gè)白球、2個(gè)紅球,從中任取2個(gè)球,每取到一個(gè)黑球記0分,每取到一個(gè)白球記1分,每取到一個(gè)紅球記2分,用表示得分?jǐn)?shù) ①求的概率分布列 ②求的數(shù)學(xué)期望 解:①依題意的取值為0、1、2、3、4 =0時(shí),取2黑 p(=0)= =1時(shí),取1黑1白 p(=1)= =2時(shí),取2白或1紅1黑p(=2)= + =3時(shí),取1白1紅,概率p(=3)= =4時(shí),取2紅,概率p(=4)= 0 1
20、2 3 4 p ∴分布列為 (2)期望E=0×+1×+2×+3×+4×= 3.學(xué)校新進(jìn)了三臺(tái)投影儀用于多媒體教學(xué),為保證設(shè)備正常工作,事先進(jìn)行獨(dú)立試驗(yàn),已知各設(shè)備產(chǎn)生故障的概率分別為p1、p2、p3,求試驗(yàn)中三臺(tái)投影儀產(chǎn)生故障的數(shù)學(xué)期望 解:設(shè)表示產(chǎn)生故障的儀器數(shù),Ai表示第i臺(tái)儀器出現(xiàn)故障(i=1、2、3) 表示第i臺(tái)儀器不出現(xiàn)故障,則: p(=1)=p(A1··)+ p(·A2·)+ p(··A3) =p1(1-p2) (1-p
21、3)+ p2(1-p1) (1-p3)+ p3(1-p1) (1-p2) = p1+ p2+p3-2p1p2-2p2p3-2p3p1+3p1p2p3 p(=2)=p(A1· A2·)+ p(A1··)+ p(·A2·A3) = p1p2 (1-p3)+ p1p3(1-p2)+ p2p3(1-p1) = p1p2+ p1p3+ p2p3-3p1p2p3 p(=3)=p(A1· A2·A3)= p1p2p3 ∴=1×p(=1)+2×p(=2)+3×p(=3)=
22、 p1+p2+p3 注:要充分運(yùn)用分類(lèi)討論的思想,分別求出三臺(tái)儀器中有一、二、三臺(tái)發(fā)生故障的概率后再求期望 4.一個(gè)袋子里裝有大小相同的3個(gè)紅球和2個(gè)黃球,從中同時(shí)取出2個(gè),含紅球個(gè)數(shù)的數(shù)學(xué)期望是 1.2 解:從5個(gè)球中同時(shí)取出2個(gè)球,出現(xiàn)紅球的分布列為 0 1 2 P 5. 、兩個(gè)代表隊(duì)進(jìn)行乒乓球?qū)官?,每?duì)三名隊(duì)員,隊(duì)隊(duì)員是,隊(duì)隊(duì)員是,按以往多次比賽的統(tǒng)計(jì),對(duì)陣隊(duì)員之間勝負(fù)概率如下: 對(duì)陣隊(duì)員 A隊(duì)隊(duì)員勝的概率 B隊(duì)隊(duì)員勝的概率 A1對(duì)B1 A2對(duì)B2 A3對(duì)B3 現(xiàn)按表中對(duì)陣方式出場(chǎng),每場(chǎng)勝隊(duì)得1分,負(fù)隊(duì)得0分,設(shè)隊(duì),隊(duì)最后所得分分別為, (1)求,的概率分布; (2)求, 解:(Ⅰ),的可能取值分別為3,2,1,0 根據(jù)題意知,所以 (Ⅱ); 因?yàn)?所以 七、板書(shū)設(shè)計(jì)(略) 八、教學(xué)反思: (1)離散型隨機(jī)變量的期望,反映了隨機(jī)變量取值的平均水平; (2)求離散型隨機(jī)變量ξ的期望的基本步驟: ①理解ξ的意義,寫(xiě)出ξ可能取的全部值; ②求ξ取各個(gè)值的概率,寫(xiě)出分布列; ③根據(jù)分布列,由期望的定義求出Eξ 公式E(aξ+b)= aEξ+b,以及服從二項(xiàng)分布的隨機(jī)變量的期望Eξ=np 。
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- B7U7Sb2b課件
- 9比的基本性質(zhì)
- 離散數(shù)學(xué)-1-7 對(duì)偶與范式
- 電氣08級(jí)供配電課程設(shè)計(jì)
- 三年級(jí)數(shù)學(xué)上冊(cè)第一單元11毫米、分米的認(rèn)識(shí) 第一課時(shí)課件
- 三年級(jí)上冊(cè)千米的認(rèn)識(shí)
- 描述簡(jiǎn)單的行走路線
- 夢(mèng)游天姥吟留別
- 想北平(教育精
- 長(zhǎng)安汽車(chē)股權(quán)激勵(lì)方案
- 壽險(xiǎn)意義功用平安課件
- 師生互換教學(xué)中醫(yī)學(xué)基礎(chǔ)之血液循環(huán)與五臟的調(diào)節(jié)
- 連鑄坯初始凝固控制技術(shù)的發(fā)展
- 民營(yíng)企業(yè)家族企業(yè)職業(yè)化轉(zhuǎn)型(ppt 49)
- 25第十二單元課題2化學(xué)元素與人體健康