人教版 高中數(shù)學【選修 21】3.2.3立體幾何中的向量方法:二面角學案
-
資源ID:41726967
資源大?。?span id="nncxdgf" class="font-tahoma">68.50KB
全文頁數(shù):2頁
- 資源格式: DOC
下載積分:10積分
快捷下載
會員登錄下載
微信登錄下載
微信掃一掃登錄
友情提示
2、PDF文件下載后,可能會被瀏覽器默認打開,此種情況可以點擊瀏覽器菜單,保存網(wǎng)頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預(yù)覽文檔經(jīng)過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標題沒有明確說明有答案則都視為沒有答案,請知曉。
|
人教版 高中數(shù)學【選修 21】3.2.3立體幾何中的向量方法:二面角學案
2019人教版精品教學資料·高中選修數(shù)學3.2.3 立體幾何中的向量方法二面角【學習目標】能用向量方法解決二面角的計算問題.【自主學習】 1. 二面角的大小是用它的平面角來度量的,求二面角關(guān)鍵是確定二面角的平面角.探究1.如圖,二面角-l-,AB,CD,ABl于B,CDl于C,則與二面角的大小關(guān)系是 ,因此求二面角的大小可轉(zhuǎn)化為求.ABDCl2.設(shè)向量,分別是平面、的法向量,二面角的平面角為.在圖1中,有什么關(guān)系?在圖2中,有什么關(guān)系?圖2把圖1、圖2中的二面角換為銳二面角,又能得到什么結(jié)論?圖1【自主檢測】1.已知在一個的二面角的棱上有兩點,分別是在這個二面角的兩個平面內(nèi),且垂直于線段,又知,求的長【典型例題】例1在正四面體中,求相鄰兩個面所成的二面角的余弦值解:例2.已知PA垂直矩形ABCD所在平面,PA=AB=1,BC=2,求二面角B-PC-D平面角的余弦值.解法1:可分別求兩平面的法向量.解法2:可在兩半平面內(nèi)分別作棱的垂線,求這樣的兩垂線向量的夾角.ABCDEFP