陜西省中考數(shù)學(xué) 專題跟蹤突破四 壓軸題 二次函數(shù)

上傳人:仙*** 文檔編號(hào):41615357 上傳時(shí)間:2021-11-22 格式:DOC 頁數(shù):4 大?。?98KB
收藏 版權(quán)申訴 舉報(bào) 下載
陜西省中考數(shù)學(xué) 專題跟蹤突破四 壓軸題 二次函數(shù)_第1頁
第1頁 / 共4頁
陜西省中考數(shù)學(xué) 專題跟蹤突破四 壓軸題 二次函數(shù)_第2頁
第2頁 / 共4頁
陜西省中考數(shù)學(xué) 專題跟蹤突破四 壓軸題 二次函數(shù)_第3頁
第3頁 / 共4頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《陜西省中考數(shù)學(xué) 專題跟蹤突破四 壓軸題 二次函數(shù)》由會(huì)員分享,可在線閱讀,更多相關(guān)《陜西省中考數(shù)學(xué) 專題跟蹤突破四 壓軸題 二次函數(shù)(4頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、△+△數(shù)學(xué)中考教學(xué)資料2019年編△+△ 壓軸題 二次函數(shù) 1.(2015遂寧)如圖,已知拋物線y=ax2+bx+c經(jīng)過A(-2,0),B(4,0),C(0,3)三點(diǎn). (1)求該拋物線的解析式; (2)在y軸上是否存在點(diǎn)M,使△ACM為等腰三角形?若存在,請(qǐng)直接寫出所有滿足要求的點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由. 解:(1)把A(-2,0),B(4,0),C(0,3)代入拋物線y=ax2+bx+c得解得則拋物線的解析式是:y=-x2+x+3  (2)如圖,作線段CA的垂直平分線,交y軸于M1,交AC于N,連接AM1,則△AM1C是等腰三角形,∵AC==,∴CN=,∵△CN

2、M1∽△COA,∴=,∴=,∴CM1=,∴OM1=OC-CM1=3-=,∴M1的坐標(biāo)是(0,),當(dāng)CA=CM2=時(shí),△AM2C是等腰三角形,則OM2=3+,M2的坐標(biāo)是(0,3+),當(dāng)CA=AM3=時(shí),△AM3C是等腰三角形,則OM3=3,M3的坐標(biāo)是(0,-3),當(dāng)CA=CM4=時(shí),△AM4C是等腰三角形,則OM4=-3,M4的坐標(biāo)是(0,3-) 2.(2015益陽)已知拋物線E1:y=x2經(jīng)過點(diǎn)A(1,m),以原點(diǎn)為頂點(diǎn)的拋物線E2經(jīng)過點(diǎn)B(2,2),點(diǎn)A,B關(guān)于y 軸的對(duì)稱點(diǎn)分別為點(diǎn)A′,B′. (1)求m的值及拋物線E2所表示的二次函數(shù)的表達(dá)式; (2)如圖,在第一象限內(nèi)

3、,拋物線E1上是否存在點(diǎn)Q,使得以點(diǎn)Q,B,B′為頂點(diǎn)的三角形為直角三角形?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由. 解:(1)∵拋物線E1經(jīng)過點(diǎn)A(1,m),∴m=12=1.∵拋物線E2的頂點(diǎn)在原點(diǎn),可設(shè)它對(duì)應(yīng)的函數(shù)表達(dá)式為y=ax2(a≠0),又∵點(diǎn)B(2,2)在拋物線E2上,∴2=a22,解得:a=,∴拋物線E2所對(duì)應(yīng)的二次函數(shù)表達(dá)式為y=x2  (2)如圖,假設(shè)在第一象限內(nèi),拋物線E1上存在點(diǎn)Q,使得△QBB′為直角三角形,由圖象可知直角頂點(diǎn)只能為點(diǎn)B或點(diǎn)Q.①當(dāng)點(diǎn)B為直角頂點(diǎn)時(shí),過B作Q1B⊥BB′交拋物線E1于Q1,則點(diǎn)Q1與B的橫坐標(biāo)相等且為2,將x=2代入y=x

4、2得y=4,∴點(diǎn)Q1的坐標(biāo)為(2,4)  ②當(dāng)點(diǎn)Q為直角頂點(diǎn)時(shí),則有Q2B′2+Q2B2=B′B2,過點(diǎn)Q2作GQ2⊥BB′于G,設(shè)點(diǎn)Q2的坐標(biāo)為(t,t2)(t>0),則有(t+2)2+(t2-2)2+(2-t)2+(t2-2)2=42,整理得:t4-3t2=0,∵t>0,∴t2-3=0,解得t1=,t2=-(舍去),∴點(diǎn)Q2的坐標(biāo)為(,3),綜合①②,存在符合條件的點(diǎn)Q坐標(biāo)為(2,4)與(,3) 3.(2015貴陽模擬)如圖所示,拋物線y=x2+bx+c經(jīng)過A,B兩點(diǎn),A,B兩點(diǎn)的坐標(biāo)分別為(-1,0),(0,-3). (1)求拋物線的函數(shù)解析式; (2)點(diǎn)E為拋物線的頂點(diǎn),

5、點(diǎn)C為拋物線與x軸的另一交點(diǎn),點(diǎn)D為y軸上一點(diǎn),且DC=DE,求出點(diǎn)D的坐標(biāo); (3)在直線DE上存在點(diǎn)P,使得以C,D,P為頂點(diǎn)的三角形與△DOC相似,請(qǐng)你直接寫出所有滿足條件的點(diǎn)P的坐標(biāo). 解:(1)∵拋物線y=x2+bx+c經(jīng)過A(-1,0),B(0,-3),∴解得故拋物線的函數(shù)解析式為y=x2-2x-3 (2)令x2-2x-3=0,解得x1=-1,x2=3,則點(diǎn)C的坐標(biāo)為(3,0),∵y=x2-2x-3=(x-1)2-4,∴點(diǎn)E坐標(biāo)為(1,-4),設(shè)點(diǎn)D的坐標(biāo)為(0,m),作EF⊥y軸于點(diǎn)F,∵DC2=OD2+OC2=m2+32,DE2=DF2+EF2=(m+4)2+12,∵DC=

6、DE,∴m2+9=m2+8m+16+1,解得m=-1,∴點(diǎn)D的坐標(biāo)為(0,-1) (3)∵點(diǎn)C(3,0),D(0,-1),E(1,-4),∴CO=DF=3,DO=EF=1,根據(jù)勾股定理,CD===,在△COD和△DFE中,∵∴△COD≌△DFE(SAS),∴∠EDF=∠DCO,又∵∠DCO+∠CDO=90,∴∠EDF+∠CDO=90,∴∠CDE=180-90=90,∴CD⊥DE,①OC與CD是對(duì)應(yīng)邊時(shí),∵△DOC∽△PDC,∴=,即=,解得DP=,過點(diǎn)P作PG⊥y軸于點(diǎn)G,則==,即==,解得DG=1,PG=,當(dāng)點(diǎn)P在點(diǎn)D的左邊時(shí),OG=DG-DO=1-1=0,所以點(diǎn)P(-,0),當(dāng)點(diǎn)P

7、在點(diǎn)D的右邊時(shí),OG=DO+DG=1+1=2,所以,點(diǎn)P(,-2);②OC與DP是對(duì)應(yīng)邊時(shí),∵△DOC∽△CDP,∴=,即=,解得DP=3,過點(diǎn)P作PG⊥y軸于點(diǎn)G,則==,即==,解得DG=9,PG=3,當(dāng)點(diǎn)P在點(diǎn)D的左邊時(shí),OG=DG-OD=9-1=8,所以,點(diǎn)P的坐標(biāo)是(-3,8),當(dāng)點(diǎn)P在點(diǎn)D的右邊時(shí),OG=OD+DG=1+9=10,所以,點(diǎn)P的坐標(biāo)是(3,-10),綜上所述,滿足條件的點(diǎn)P共有4個(gè),其坐標(biāo)分別為(-,0),(,-2),(-3,8),(3,-10) 4.(2015重慶)如圖,拋物線y=-x2+2x+3與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C,點(diǎn)D和

8、點(diǎn)C關(guān)于拋物線的對(duì)稱軸對(duì)稱,直線AD與y軸交于點(diǎn)E. (1)求直線AD的解析式; (2)如圖,直線AD上方的拋物線上有一點(diǎn)F,過點(diǎn)F作FG⊥AD于點(diǎn)G,作FH平行于x軸交直線AD于點(diǎn)H,求△FGH周長(zhǎng)的最大值; (3)點(diǎn)M是拋物線的頂點(diǎn),點(diǎn)P是y軸上一點(diǎn),點(diǎn)Q是坐標(biāo)平面內(nèi)一點(diǎn),以A,M,P,Q為頂點(diǎn)的四邊形是以AM為邊的矩形.若點(diǎn)T和點(diǎn)Q關(guān)于AM所在直線對(duì)稱,求點(diǎn)T的坐標(biāo). 解:(1)當(dāng)x=0時(shí),y=-x2+2x+3=3,則C(0,3),當(dāng)y=0時(shí),-x2+2x+3=0,解得x1=-1,x2=3,則A(-1,0),B(3,0),∵y=-x2+2x+3=-(x-1)2+4,∴拋物線對(duì)

9、稱軸為直線x=1,而點(diǎn)D和點(diǎn)C關(guān)于直線x=1對(duì)稱,∴D(2,3),設(shè)直線AD的解析式為y=kx+b,把A(-1,0),D(2,3)分別代入得解得∴直線AD的解析式為y=x+1 (2)當(dāng)x=0時(shí),y=x+1=1,則E(0,1),∵OA=OE,∴△OAE為等腰直角三角形,∴∠EAO=45,∵FH∥OA,∴△FGH為等腰直角三角形,過點(diǎn)F作FN⊥FH交AD于N,如圖,∴△FNH為等腰直角三角形,而FG⊥HN,∴GH=NG,∴△FGH的周長(zhǎng)等于△FGN的周長(zhǎng),∵FG=GN=FN,∴△FGN周長(zhǎng)=(1+)FN,∴當(dāng)FN最大時(shí),△FGN的周長(zhǎng)最大,設(shè)F(x,-x2+2x+3),則N(x,x+1),∴FN=

10、-x2+2x+3-x-1=-(x-)2+,當(dāng)x=時(shí),F(xiàn)N有最大值,∴△FGN周長(zhǎng)的最大值為(1+)=,即△FGH周長(zhǎng)的最大值為 (3)直線AM交y軸于R,y=-x2+2x+3=-(x-1)2+4,則M(1,4),設(shè)直線AM的解析式為y=mx+n,把A(-1,0),M(1,4)分別代入得解得∴直線AM的解析式為y=2x+2,當(dāng)x=0時(shí),y=2x+2=2,則R(0,2),當(dāng)AQ為矩形APQM的對(duì)角線,如圖1,∵∠RAP=90,而AO⊥PR,∴Rt△AOR∽R(shí)t△POA,∴AO∶OP=OR∶OA,即1∶OP=2∶1,解得OP=,∴P點(diǎn)坐標(biāo)為(0,-),∵點(diǎn)A(-1,0)向上平移4個(gè)單位,向右平移2個(gè)單位得到M(1,4),∴點(diǎn)P(0,-)向上平移4個(gè)單位,向右平移2個(gè)單位得到Q(2,),∵點(diǎn)T和點(diǎn)Q關(guān)于AM所在直線對(duì)稱,∴T點(diǎn)坐標(biāo)為(0,);當(dāng)AP為矩形AQPM的對(duì)角線,反向延長(zhǎng)QA交y軸于S,如圖2,同理可得S點(diǎn)坐標(biāo)為(0,-),∵R點(diǎn)為AM的中點(diǎn),∴R點(diǎn)為PS的中點(diǎn),∴PM=SA,P(0,),∵PM=AQ,∴AQ=AS,∴點(diǎn)Q關(guān)于AM的對(duì)稱點(diǎn)為S,即T點(diǎn)坐標(biāo)為(0,-).綜上所述,點(diǎn)T的坐標(biāo)為(0,)或(0,-)

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!