《高三數(shù)學(xué)理一輪復(fù)習(xí)夯基提能作業(yè)本:第五章 平面向量 第二節(jié) 平面向量的基本定理及坐標(biāo)表示 Word版含解析》由會(huì)員分享,可在線閱讀,更多相關(guān)《高三數(shù)學(xué)理一輪復(fù)習(xí)夯基提能作業(yè)本:第五章 平面向量 第二節(jié) 平面向量的基本定理及坐標(biāo)表示 Word版含解析(6頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、
高考數(shù)學(xué)精品復(fù)習(xí)資料
2019.5
第二節(jié) 平面向量的基本定理及坐標(biāo)表示
A組 基礎(chǔ)題組
1.已知平面向量a=(1,1),b=(1,-1),則向量12a-32b等于( )
A.(-2,-1) B.(-2,1) C.(-1,0) D.(-1,2)
2.已知平面向量a=(2,-1),b=(1,1),c=(-5,1).若(a+kb)∥c,則實(shí)數(shù)k的值為( )
A.2 B.12 C.114 D.-114
3.若α,β是一組基底,向量γ=xα+yβ(x,y∈R),則
2、稱(x,y)為向量γ在基底α、β下的坐標(biāo).現(xiàn)已知向量a在基底p=(1,-1),q=(2,1)下的坐標(biāo)為(-2,2),則a在基底m=(-1,1),n=(1,2)下的坐標(biāo)為( )
A.(2,0) B.(0,-2) C.(-2,0) D.(0,2)
4.(20xx河北石家莊一模)A,B,C是圓O上不同的三點(diǎn),線段CO與線段AB交于點(diǎn)D(點(diǎn)O與點(diǎn)D不重合),若=λ+μ(λ,μ∈R),則λ+μ的取值范圍是( )
A.(0,1) B.(1,+∞) C.(1,2] D.(-1,0)
5.(20xx棗莊模擬)在?ABCD中,AC為一條對(duì)角線,=(2,4),=(1,3),則向量的坐標(biāo)為
3、 .
6.P={a|a=(-1,1)+m(1,2),m∈R},Q={b|b=(1,-2)+n(2,3),n∈R}是兩個(gè)向量集合,則P∩Q等于 .
7.如圖,已知?ABCD的邊BC,CD上的中點(diǎn)分別是M,N,且=e1,=e2,若=xe2+ye1(x,y∈R),則x+y= .
8.如圖,在梯形ABCD中,AD∥BC,且AD=13BC,E,F分別為線段AD與BC的中點(diǎn).設(shè)=a,=b,試用a,b為基底表示向量,,.
9.已知a=(1,0),b=(2,1).
(1)當(dāng)k為何值時(shí),ka-b與a+2b共線?
(2)若=2a+3b,=a+mb且
4、A,B,C三點(diǎn)共線,求m的值?
B組 提升題組
10.在△ABC中,點(diǎn)D在線段BC的延長線上,且=3,點(diǎn)O在線段CD上(與點(diǎn)C、D不重合),若=x+(1-x),則x的取值范圍是( )
A.0,12 B.0,13 C.-12,0 D.-13,0
11.(20xx河南中原名校3月聯(lián)考)如圖,在直角梯形ABCD中,AB=2AD=2DC,E為BC邊上一點(diǎn),=3,F為AE的中點(diǎn),則=( )
A.- B.-
C.-+ D.-+
12.(20xx安徽十校3月聯(lián)考)已知A、B、C三點(diǎn)不共線,且=-+2
5、,則=( )
A.23 B.32 C.6 D.16ZXXK]
13.已知向量=(1,-3),=(2,-1),=(k+1,k-2),若A,B,C三點(diǎn)能構(gòu)成三角形,則實(shí)數(shù)k應(yīng)滿足的條件是 .
14.如圖,G是△ABO的重心,P,Q分別是邊OA,OB上的動(dòng)點(diǎn),且P,G,Q三點(diǎn)共線.設(shè)=x,=y,則1x+1y= .
15.已知三點(diǎn)A(a,0),B(0,b),C(2,2),其中a>0,b>0.
(1)若O是坐標(biāo)原點(diǎn),且四邊形OACB是平行四邊形,試求a,b的值;
(2)若A,B,C三點(diǎn)共線,試求a+b的最小值.
6、
答案全解全析
A組 基礎(chǔ)題組
1.D 12a-32b=12(1,1)-32(1,-1)=(-1,2).故選D.
2.B 由題意知,a+kb=(2,-1)+k(1,1)=(k+2,k-1),由(a+kb)∥c,得-5(k-1)=k+2,解得k=12,故選B.
3.D 由已知可得a=-2p+2q=(-2,2)+(4,2)=(2,4).設(shè)a=xm+yn,則(2,4)=x(-1,1)+y(1,2)=(-x+y,x+2y),∴-x+y=2,x+2y=4,解得x=0,y=2.故選D.
4.B 設(shè)=m(m>1),因?yàn)?λ+μ,所以m=λ+μ,即=+,又A,B,D三點(diǎn)共線,所以+=1,即λ+μ=
7、m,所以λ+μ>1,故選B.
5.答案 (-3,-5)
解析 設(shè)=(x,y),因?yàn)?+,所以(1,3)=(2,4)+(x,y),所以1=2+x,3=4+y,即x=-1,y=-1,所以=(-1,-1),所以=-=(-1,-1)-(2,4)=(-3,-5).
6.答案 {(-13,-23)}
解析 P中,a=(-1+m,1+2m),Q中,b=(1+2n,-2+3n).令-1+m=1+2n,1+2m=-2+3n,得m=-12,n=-7.此時(shí)a=b=(-13,-23),故P∩Q={(-13,-23)}.
7.答案 23
解析 設(shè)=a,=b,則=a,=-b.
由題意得e1=b+a2,e2=
8、a+b2,解得a=43e2-23e1,b=43e1-23e2.
∴=43e2-23e1.
故x=43,y=-23,
∴x+y=23.
8.解析 =++=-16b-a+12b=13b-a,=+=-16b+13b-a=16b-a,=+=-12b-16b-a=a-23b.
9.解析 (1)ka-b=k(1,0)-(2,1)=(k-2,-1).
a+2b=(1,0)+2(2,1)=(5,2).
若ka-b與a+2b共線,則2(k-2)-(-1)5=0,即2k-4+5=0,得k=-12.
(2)∵A,B,C三點(diǎn)共線,
∴=λ(λ∈R).
即2a+3b=λ(a+mb),
∴∴m=32
9、.
B組 提升題組
10.D 解法一:依題意,設(shè)=λ,其中1<λ<43,則有=+=+λ=+λ(-)=(1-λ)+λ.又=x+(1-x),且、不共線,于是有x=1-λ∈-13,0,即x的取值范圍是-13,0,選D.
解法二:∵=x+-x,∴-=x(-),即=x=-3x,∵O在線段CD(不含C、D兩點(diǎn))上,∴0<-3x<1,∴-13
10、2.C
如圖,取=-,=2,以AM,AN為鄰邊作平行四邊形AMDN,
此時(shí)=-+2.
由圖可知S△ABD=3S△AMD,S△ACD=12S△AND,
又S△AMD=S△AND,∴=6,故選C.
13.答案 k≠1
解析 若點(diǎn)A,B,C能構(gòu)成三角形,則向量,不共線,∵=-=(2,-1)-(1,-3)=(1,2),=-=(k+1,k-2)-(1,-3),=(k,k+1),∴1(k+1)-2k≠0,解得k≠1.
14.答案 3
解析 設(shè)=λ,則=+=+λ=+λ(-)=(1-λ)+λ=(1-λ)x+λy,①
∵G是△OAB的重心,
∴==2312(+)
=+.②
∵,不共線,∴由①②得
∴∴1x+1y=3.
15.解析 (1)因?yàn)樗倪呅蜲ACB是平行四邊形,所以=,即(a,0)=(2,2-b),所以a=2,2-b=0,解得a=2,b=2.故a=2,b=2.
(2)因?yàn)?(-a,b),=(2,2-b),由A,B,C三點(diǎn)共線,得∥,所以-a(2-b)-2b=0,即2(a+b)=ab,所以2(a+b)=ab≤a+b22,即(a+b)2-8(a+b)≥0,解得a+b≥8或a+b≤0(不合題意,舍去).所以a+b的最小值是8(當(dāng)且僅當(dāng)a=b=4時(shí),a+b取最小值).