歡迎來(lái)到裝配圖網(wǎng)! | 幫助中心 裝配圖網(wǎng)zhuangpeitu.com!
裝配圖網(wǎng)
ImageVerifierCode 換一換
首頁(yè) 裝配圖網(wǎng) > 資源分類(lèi) > DOC文檔下載  

沖刺2019高考數(shù)學(xué)二輪復(fù)習(xí) 核心考點(diǎn)特色突破 專(zhuān)題18 等差數(shù)列與等比數(shù)列基本量的問(wèn)題(含解析).doc

  • 資源ID:3929239       資源大?。?span id="x2frlgo" class="font-tahoma">143KB        全文頁(yè)數(shù):13頁(yè)
  • 資源格式: DOC        下載積分:9.9積分
快捷下載 游客一鍵下載
會(huì)員登錄下載
微信登錄下載
三方登錄下載: 微信開(kāi)放平臺(tái)登錄 支付寶登錄   QQ登錄   微博登錄  
二維碼
微信掃一掃登錄
下載資源需要9.9積分
郵箱/手機(jī):
溫馨提示:
用戶名和密碼都是您填寫(xiě)的郵箱或者手機(jī)號(hào),方便查詢(xún)和重復(fù)下載(系統(tǒng)自動(dòng)生成)
支付方式: 支付寶    微信支付   
驗(yàn)證碼:   換一換

 
賬號(hào):
密碼:
驗(yàn)證碼:   換一換
  忘記密碼?
    
友情提示
2、PDF文件下載后,可能會(huì)被瀏覽器默認(rèn)打開(kāi),此種情況可以點(diǎn)擊瀏覽器菜單,保存網(wǎng)頁(yè)到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請(qǐng)使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無(wú)水印,預(yù)覽文檔經(jīng)過(guò)壓縮,下載后原文更清晰。
5、試題試卷類(lèi)文檔,如果標(biāo)題沒(méi)有明確說(shuō)明有答案則都視為沒(méi)有答案,請(qǐng)知曉。

沖刺2019高考數(shù)學(xué)二輪復(fù)習(xí) 核心考點(diǎn)特色突破 專(zhuān)題18 等差數(shù)列與等比數(shù)列基本量的問(wèn)題(含解析).doc

專(zhuān)題18 等差數(shù)列與等比數(shù)列基本量的問(wèn)題【自主熱身,歸納提煉】1、設(shè)Sn是等差數(shù)列an的前n項(xiàng)和,若a2a42,S2S41,則a10_【答案】. 8【解析】: 列方程組求出a1和d,則a10a19d.設(shè)公差為d,則解得所以a10a19d8.2、 已知等差數(shù)列an的前n項(xiàng)和為Sn.若S1530,a71,則S9的值為_(kāi)【答案】: 9 解法1利用等差數(shù)列基本量;解法2利用等差數(shù)列的性質(zhì):等差數(shù)列項(xiàng)數(shù)與項(xiàng)數(shù)的關(guān)系:在等差數(shù)列an中,若m,n,p,qN*且mnpq,則amanapaq;等差數(shù)列任兩項(xiàng)的關(guān)系:在等差數(shù)列an中,若m,nN*且其公差為d,則aman(mn)d.3、在各項(xiàng)均為正數(shù)的等比數(shù)列an中,若a21,a8a66a4,則a3的值為_(kāi)【答案】: 【解析】:由a8a66a4得a2q6a2q46a2q2,則有q4q260,所以q23(舍負(fù)),又q>0,所以q,則a3a2q. 等差、等比數(shù)列基本量的計(jì)算是高考??碱}型,熟練掌握等差、等比數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式是解題的關(guān)鍵,值得注意的是等比數(shù)列的通項(xiàng)公式的推廣“anamqnm(n>m)”的應(yīng)用4、已知等比數(shù)列an的前n項(xiàng)和為Sn,且,a4a2,則a3的值為_(kāi)【答案】:. 【解析】: 兩個(gè)已知等式均可由a3和公比q表示由已知,得解得5、記等差數(shù)列an的前n項(xiàng)和為Sn.若am10,S2m1110,則m的值為_(kāi)【答案】: 6【解析】:由S2m1(2m1)a1(m1)d(2m1)(2m1)am得,11010(2m1),解得m6.6、已知各項(xiàng)都是正數(shù)的等比數(shù)列an的前n項(xiàng)和為Sn,若4a4,a3,6a5成等差數(shù)列,且a33a,則S3_【答案】:. 【解析】:設(shè)各項(xiàng)都是正數(shù)的等比數(shù)列an的公比為q,則q>0,且a1>0,由4a4,a3,6a5成等差數(shù)列,得2a34a46a5,即2a34a3q6a3q2,解得q.又由a33a,解得a1,所以S3a1a2a3. 7、知是等比數(shù)列,是其前項(xiàng)和若,則的值為 【答案】2或6【解析】由,當(dāng)左邊=右邊=顯然不成立,所以,則有,因?yàn)?,所?即,所以或,所以.【易錯(cuò)警示】若用到等比數(shù)列的前項(xiàng)公式,要討論公比是否為1;方程兩邊,若公因數(shù)不為0,可以同時(shí)約去,若不確定是否為0,要移項(xiàng)因式分解,轉(zhuǎn)化成乘積為0的形式再求解,否則會(huì)漏解.8、九章算術(shù)中的“竹九節(jié)”問(wèn)題:現(xiàn)有一根9節(jié)的竹子,自上而下各節(jié)的容積成等差數(shù)列,上面4節(jié)的容積共3升,下面3節(jié)的容積共4升,則該竹子最上面一節(jié)的容積為_(kāi)升【答案】:. 【解析】:設(shè)該等差數(shù)列為an,則有S43,a9a8a74,即a8,則有即解得a1.9、 等差數(shù)列an的前n項(xiàng)和為Sn,且anSnn216n15(n2,nN*),若對(duì)任意nN*,總有SnSk,則k的值是_10、若等比數(shù)列an的各項(xiàng)均為正數(shù),且a3a12,則a5的最小值為 【答案】:8 【解析】: 因?yàn)閍3a12,所以,即所以,設(shè),即,所以,當(dāng)且僅當(dāng),即時(shí)取到等號(hào).【問(wèn)題探究,變式訓(xùn)練】例1、已知公差為d的等差數(shù)列的前n項(xiàng)和為Sn,若3,則的值為_(kāi)【答案】:. 【解析】:設(shè)等差數(shù)列an的首項(xiàng)為a1,則由3得3,所以d4a1,所以.【變式1】、設(shè)是等差數(shù)列的前n項(xiàng)和,若,則= 【解析】 由,得,由S3,S6- S3,S9- S6成等差數(shù)列,故S6- S3 = 2S3,S9- S6 = 3S3 = S6,解得=【變式2】、 設(shè)是等比數(shù)列的前n項(xiàng)和,若,則= 【解析】 由,得,由S5,S10- S5,S15- S10,S20- S15成等差數(shù)列,故S10- S5 = 2 S5,S15- S10 = 4S5,S20- S15 = 8S5,所以,故【變式3】、 設(shè)是等比數(shù)列的前n項(xiàng)和,若,則= 【解析】 由,得,則【關(guān)聯(lián)1】、設(shè)數(shù)列an的前n項(xiàng)和為Sn,滿足Sn2an2,則_.【解析】: 4 求出a1及an1與an間的遞推關(guān)系由Sn2an2和Sn12an12,兩式相減得an12an0,即an12an.又a1S12,所以數(shù)列an是首項(xiàng)為2、公比q2的等比數(shù)列,所以q24.【關(guān)聯(lián)2】、Sn是等差數(shù)列an的前n項(xiàng)和,若,則_.【答案】: 解法1 由可得,當(dāng)n1時(shí),所以a22a1. da2a1a1,所以.解法2 ,觀察發(fā)現(xiàn)可令Snn2n,則anSnSn1n2n(n1)2(n1)2n,所以.【關(guān)聯(lián)3】、 已知等差數(shù)列an和bn的前n項(xiàng)的和分別是An和Bn,且,使得為整數(shù)的正整數(shù)n的個(gè)數(shù)為 【解析】,所以,要使得為整數(shù),則n+1為18的因數(shù), n=1,2,5,8,17,所以,使得為整數(shù)的正整數(shù)n共有5個(gè)例1、已知數(shù)列an是公差為正數(shù)的等差數(shù)列,其前n項(xiàng)和為Sn,且a2a315,S416.(1) 求數(shù)列an的通項(xiàng)公式(2) 設(shè)數(shù)列bn滿足b1a1,bn1bn.求數(shù)列bn的通項(xiàng)公式;是否存在正整數(shù)m,n(mn),使得b2,bm,bn成等差數(shù)列?若存在,求出m,n的值;若不存在,請(qǐng)說(shuō)明理由【解析】: (1) 設(shè)數(shù)列an的公差為d,則d0.由a2a315,S416,得解得或(舍去)所以an2n1.(4分)(2) 因?yàn)閎1a11,bn1bn, (6分)即b2b1,b3b2,bnbn1,n2,累加得bnb1,(9分)所以bnb11.又b11也符合上式,故bn,nN*.(11分)解后反思 對(duì)于研究與整數(shù)有關(guān)的問(wèn)題,一般地,可利用整數(shù)性或通過(guò)求出某個(gè)變量的限制范圍,利用整數(shù)的性質(zhì)進(jìn)行一一地驗(yàn)證【變式1】、設(shè)an是公差不為零的等差數(shù)列,Sn為其前n項(xiàng)和,滿足,S7 = 7(1)求數(shù)列an的通項(xiàng)公式及前n項(xiàng)和Sn;(2)試求所有的正整數(shù)m,使得為數(shù)列an中的項(xiàng)【解析】(1)設(shè)公差為d,則,得,因?yàn)閐 0,所以,又由S7 = 7得a4 = 1,解得a1 = -5,d = 2,所以,(2),令,則, 因?yàn)閠是奇數(shù),所以t可取的值為,當(dāng)t = 1,m = 1時(shí),是數(shù)列中的項(xiàng);當(dāng)t = -1時(shí),m = 0(舍),所以,滿足條件的正整數(shù)m = 1【變式2】、已知數(shù)列an的前n項(xiàng)和為Sn,數(shù)列bn,cn滿足(n1)bnan1,(n2)cn,其中nN*.(1) 若數(shù)列an是公差為2的等差數(shù)列,求數(shù)列cn的通項(xiàng)公式;(2) 若存在實(shí)數(shù),使得對(duì)一切nN*,有bncn,求證:數(shù)列an是等差數(shù)列思路分析 (2) 若數(shù)列an是公差為d的等差數(shù)列,則an1d,d,所以bncnd.因此要先證bncn是常數(shù)【解析】: (1) 若數(shù)列an是公差為2的等差數(shù)列,則.(2分)所以(n2)cnn2,得cn1.(4分)(2) 由(n1)bnan1,得n(n1)bnnan1Sn,從而(n1)(n2)bn1(n1)an2Sn1.兩式相減,得(n1)(n2)bn1n(n1)bn(n1)an2(n1)an1,即(n2)bn1nbnan2an1.(*)(6分)又(n2)cn(n1)bn,所以2(n2)cn2(n1)bn(n2)bn1nbn,整理,得cn(bnbn1)(9分)因?yàn)閎ncn對(duì)一切nN*恒成立,所以bncn(bnbn1)對(duì)一切nN*恒成立,得cn,且bnbn12.而bn,bn1,所以必有bnbn1.綜上所述,bncn對(duì)一切nN*恒成立(12分)此時(shí),由(*)式,得an2an12對(duì)一切nN*恒成立(14分)對(duì)(n1)bnan1,取n1,得a2a12.綜上所述,an1an2對(duì)一切nN*恒成立所以數(shù)列an是公差為2的等差數(shù)列(16分)思想根源 若數(shù)列an是公差為d的等差數(shù)列,則是公差為d的等差數(shù)列【關(guān)聯(lián)1】、已知數(shù)列an的前n項(xiàng)和為Sn,a13,且對(duì)任意的正整數(shù)n,都有Sn1Sn3n1,其中常數(shù)>0.設(shè)bn (nN*)(1) 若3,求數(shù)列的通項(xiàng)公式;(2) 若1且3,設(shè)cnan3n(nN*),證明數(shù)列是等比數(shù)列;(3) 若對(duì)任意的正整數(shù)n,都有bn3,求實(shí)數(shù)的取值范圍【解析】: 因?yàn)镾n1Sn3n1,nN*,所以當(dāng)n2時(shí),SnSn13n,從而an1an23n,n2,nN*又在Sn1Sn3n1中,令n1,可得a2a1231,滿足上式,所以an1an23n, nN* (2分)(1) 當(dāng)3時(shí), an13an23n,nN*,從而,即bn1bn,又b11,所以數(shù)列是首項(xiàng)為1,公差為的等差數(shù)列,所以bn.(4分)(2) 當(dāng)>0且3且1時(shí),cnan3nan123n13n an13n1(33) (an13n1)cn1, (7分) 又c130,所以是首項(xiàng)為,公比為的等比數(shù)列,cnn1(8分)(3) 在(2)中,若1,則cn0也可使an有意義,所以當(dāng)3時(shí),cnn1.從而由(1)和(2)可知 (9分)當(dāng)3時(shí),bn,顯然不滿足條件,故3.(10分)當(dāng)3時(shí),bnn1.若>3, >0,bn<bn1,nN*,bn1,),不符合,舍去. (11分)若0<<1,>0,>0,bn>bn1,nN*,且bn>0.所以只需b113即可,顯然成立故0<<1符合條件; (12分)若1,bn1,滿足條件故1符合條件;(13分)若1<<3,<0,>0,從而bn<bn1,nN*,因?yàn)閎11>0.故bn,要使bn3恒成立,只需3即可所以1<. (15分)綜上所述,實(shí)數(shù)的取值范圍是.(16分)【關(guān)聯(lián)2】、已知數(shù)列an的各項(xiàng)均為正數(shù),記數(shù)列an的前n項(xiàng)和為Sn,數(shù)列a的前n項(xiàng)和為T(mén)n,且3TnS2Sn,nN*.(1) 求a1的值;(2) 求數(shù)列an的通項(xiàng)公式;(3) 若k,tN*,且S1,SkS1,StSk成等比數(shù)列,求k和t的值 第(2)問(wèn),由于式子“3TnS2Sn”涉及數(shù)列an,a的前n項(xiàng)和,常用相鄰項(xiàng)作差法處理,將其轉(zhuǎn)化為數(shù)列an的遞推式,進(jìn)而構(gòu)造等比數(shù)列求解;第(3)問(wèn),由題意,兩個(gè)未知量k和t,一個(gè)等式,屬于不定方程問(wèn)題,通常有以下思考方法:因式分解法、利用整除性質(zhì)、不等式估計(jì)法、奇偶性分析法,本題采用奇偶性分析法求解規(guī)范解答 (1) 由3T1S2S1,得3aa2a1,即aa10.因?yàn)閍10,所以a11.(2分)(2) 因?yàn)?TnS2Sn,所以3Tn1S2Sn1,得3aSS2an1,即3a(Sn1Sn)(Sn1Sn)2an1,即3a(Sn1Sn)an12an1,因?yàn)閍n10,所以3an1Sn1Sn2,(5分)所以3an2Sn2Sn12,得3an23an1an2an1,即an22an1,所以當(dāng)n2時(shí),2.(8分)又由3T2S2S2,得3(1a)(1a2)22(1a2),即a2a20.因?yàn)閍20,所以a22,所以2,所以對(duì)nN*,都有2成立,所以數(shù)列an的通項(xiàng)公式為an2n1,nN*.(10分)(3) 由(2)可知Sn2n1.因?yàn)镾1,SkS1,StSk成等比數(shù)列,所以(SkS1)2S1(StSk),即(2k2)22t2k,(12分)所以2t(2k)232k4,即2t2(2k1)232k21(*)由于SkS10,所以k1,即k2.當(dāng)k2時(shí),2t8,得t3.(14分)當(dāng)k3時(shí),由(*),得(2k1)232k21為奇數(shù),所以t20,即t2,代入(*)得22k232k20,即2k3,此時(shí)k無(wú)正整數(shù)解綜上,k2,t3.(16分) 數(shù)列中不定方程的常見(jiàn)解題策略有因式分解法、利用整除性質(zhì)、不等式估計(jì)法、奇偶性分析法,這些策略有一個(gè)共同的特征,就是對(duì)等式兩邊適當(dāng)?shù)淖冃芜x擇等式一邊的特征進(jìn)行解題,如整除的性質(zhì)、范圍上界或下界、因式分解的形式、是否為有理數(shù)、奇偶性等【關(guān)聯(lián)3】、在數(shù)列an中,已知a12,an13an2n1.(1) 求證:數(shù)列ann為等比數(shù)列;(2) 記bnan(1)n,且數(shù)列bn的前n項(xiàng)和為T(mén)n,若T3為數(shù)列Tn中的最小項(xiàng),求的取值范圍思路分析 (1) 證明等比數(shù)列,一般從等比數(shù)列的定義出發(fā),首先要說(shuō)明它的任意一項(xiàng)均不為0,且相鄰兩項(xiàng)的比值為非零的常數(shù)(2) 由第(1)問(wèn)求出數(shù)列an的通項(xiàng)公式,由此得到bn的通項(xiàng)公式,通過(guò)分組求和后得到它的前n項(xiàng)和注意到T3為數(shù)列Tn中的最小項(xiàng),因此,將它轉(zhuǎn)化為對(duì)應(yīng)的不等式恒成立問(wèn)題,而要研究數(shù)列中的不等式恒成立問(wèn)題,研究數(shù)列的單調(diào)性是必然的手段,通過(guò)研究數(shù)列的單調(diào)性后來(lái)得到變量的取值范圍當(dāng)n2時(shí),由T2T3,得9;(12分)當(dāng)n4時(shí),n2n12(n4)(n3)0恒成立,所以對(duì)n4恒成立令f(n),n4,則f(n1)f(n)0恒成立,故f(n)在n4時(shí)單調(diào)遞增,所以f(4).(15分)綜上,9.(16分)解后反思 證明一個(gè)數(shù)列為等比數(shù)列常用定義法與等比中項(xiàng)法,其他方法只用于選擇、填空題中的判定;若證明某數(shù)列不是等比數(shù)列,則只要證明存在連續(xù)三項(xiàng)不成等比數(shù)列即可而研究數(shù)列中的取值范圍問(wèn)題,一般都是通過(guò)研究數(shù)列的單調(diào)性來(lái)進(jìn)行求解【關(guān)聯(lián)4】、已知等差數(shù)列an的公差d不為0,且ak1,ak2,akn,(k1k2kn)成等比數(shù)列,公比為q.(1) 若k11,k23,k38,求的值;(2) 當(dāng)為何值時(shí),數(shù)列kn為等比數(shù)列?(3) 若數(shù)列kn為等比數(shù)列,且對(duì)于任意nN*,不等式anakn2kn恒成立,求a1的取值范圍 思路分析 (1) 通過(guò)等比中項(xiàng),得到a1和d的方程,從而求出的值;(2) 先由數(shù)列kn為等比數(shù)列,得出kk1k3,再結(jié)合ak1,ak2,ak3成等比數(shù)列,得方程a1(k11)da1(k31)da1(k21)d2,化簡(jiǎn)得1,再證明當(dāng)1時(shí),數(shù)列kn為等比數(shù)列,從而確定的值為1;(3) 由(2)中結(jié)論得出knk1qn1(q1),代入anakn2kn并分離變量得0,再證明無(wú)限小,從而確定有下界,得到0,從而確定a1的取值范圍是2,)【解析】: (1) 由已知可得a1,a3,a8成等比數(shù)列,所以(a12d)2a1(a17d), (2分)整理可得4d23a1d.因?yàn)閐0,所以.(4分)(2) 設(shè)數(shù)列kn為等比數(shù)列,則kk1k3.又因?yàn)閍k1,ak2,ak3成等比數(shù)列,所以a1(k11)da1(k31)da1(k21)d2.整理,得a1(2k2k1k3)d(k1k3kk1k32k2)因?yàn)閗k1k3,所以a1(2k2k1k3)d(2k2k1k3)因?yàn)?k2k1k3,所以a1d,即1.(6分)當(dāng)1時(shí),ana1(n1)dnd,所以aknknd.又因?yàn)閍knak1qn1k1dqn1,所以knk1qn1.所以q,數(shù)列kn為等比數(shù)列綜上,當(dāng)1時(shí),數(shù)列kn為等比數(shù)列(8分)因?yàn)閘nxxx,則lnn12lnn1n1,解不等式n1n1lnqln,即(n1)2lnqn1ln0,可得n1,所以n12.設(shè)x表示不大于x的最大整數(shù)不妨取n01,則當(dāng)n1n0時(shí),原式得證所以0,所以a12,即得a1的取值范圍是2,)(16分)解后反思 本題第(2)問(wèn)是根據(jù)必要條件來(lái)解題,由數(shù)列kn為等比數(shù)列,得出前三項(xiàng)成等比,求出1,但要注意要證明當(dāng)1時(shí),數(shù)列kn為等比數(shù)列;第(3)問(wèn),證明當(dāng)n時(shí),0,這里用代數(shù)方法嚴(yán)格證明,要認(rèn)真地體會(huì)

注意事項(xiàng)

本文(沖刺2019高考數(shù)學(xué)二輪復(fù)習(xí) 核心考點(diǎn)特色突破 專(zhuān)題18 等差數(shù)列與等比數(shù)列基本量的問(wèn)題(含解析).doc)為本站會(huì)員(xt****7)主動(dòng)上傳,裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。 若此文所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng)(點(diǎn)擊聯(lián)系客服),我們立即給予刪除!

溫馨提示:如果因?yàn)榫W(wǎng)速或其他原因下載失敗請(qǐng)重新下載,重復(fù)下載不扣分。




關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!