《(全國通用版)2019高考數(shù)學(xué)二輪復(fù)習(xí) 板塊四 考前回扣 專題7 解析幾何學(xué)案 理.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《(全國通用版)2019高考數(shù)學(xué)二輪復(fù)習(xí) 板塊四 考前回扣 專題7 解析幾何學(xué)案 理.doc(10頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
回扣7 解析幾何
1.直線方程的五種形式
(1)點(diǎn)斜式:y-y1=k(x-x1)(直線過點(diǎn)P1(x1,y1),且斜率為k,不包括y軸和平行于y軸的直線).
(2)斜截式:y=kx+b(b為直線l在y軸上的截距,且斜率為k,不包括y軸和平行于y軸的直線).
(3)兩點(diǎn)式:=(直線過點(diǎn)P1(x1,y1),P2(x2,y2),且x1≠x2,y1≠y2,不包括坐標(biāo)軸和平行于坐標(biāo)軸的直線).
(4)截距式:+=1(a,b分別為直線的橫、縱截距,且a≠0,b≠0,不包括坐標(biāo)軸、平行于坐標(biāo)軸和過原點(diǎn)的直線).
(5)一般式:Ax+By+C=0(其中A,B不同時(shí)為0).
2.直線的兩種位置關(guān)系
當(dāng)不重合的兩條直線l1和l2的斜率存在時(shí):
(1)兩直線平行l(wèi)1∥l2?k1=k2.
(2)兩直線垂直l1⊥l2?k1k2=-1.
提醒 當(dāng)一條直線的斜率為0,另一條直線的斜率不存在時(shí),兩直線也垂直,此種情形易忽略.
3.三種距離公式
(1)A(x1,y1),B(x2,y2)兩點(diǎn)間的距離
|AB|=.
(2)點(diǎn)到直線的距離d=(其中點(diǎn)P(x0,y0),直線方程為Ax+By+C=0).
(3)兩平行線間的距離d=(其中兩平行線方程分別為l1:Ax+By+C1=0,l2:Ax+By+C2=0).
提醒 應(yīng)用兩平行線間距離公式時(shí),注意兩平行線方程中x,y的系數(shù)應(yīng)對(duì)應(yīng)相等.
4.圓的方程的兩種形式
(1)圓的標(biāo)準(zhǔn)方程:(x-a)2+(y-b)2=r2.
(2)圓的一般方程:x2+y2+Dx+Ey+F=0(D2+E2-4F>0).
5.直線與圓、圓與圓的位置關(guān)系
(1)直線與圓的位置關(guān)系:相交、相切、相離,代數(shù)判斷法與幾何判斷法.
(2)圓與圓的位置關(guān)系:相交、內(nèi)切、外切、外離、內(nèi)含,代數(shù)判斷法與幾何判斷法.
6.圓錐曲線的定義、標(biāo)準(zhǔn)方程與幾何性質(zhì)
名稱
橢圓
雙曲線
拋物線
定義
|PF1|+|PF2|=2a(2a>|F1F2|)
||PF1|-|PF2||=2a(2a<|F1F2|)
|PF|=|PM|點(diǎn)F不在直線l上,PM⊥l于M
標(biāo)準(zhǔn)方程
+=1(a>b>0)
-=1(a>0,b>0)
y2=2px(p>0)
圖形
幾何性質(zhì)
范圍
|x|≤a,|y|≤b
|x|≥a
x≥0
頂點(diǎn)
(a,0),(0,b)
(a,0)
(0,0)
對(duì)稱性
關(guān)于x軸,y軸和原點(diǎn)對(duì)稱
關(guān)于x軸對(duì)稱
焦點(diǎn)
(c,0)
軸
長軸長2a,短軸長2b
實(shí)軸長2a,虛軸長2b
離心率
e== (0
1)
e=1
準(zhǔn)線
x=-
漸近線
y=x
7.直線與圓錐曲線的位置關(guān)系
判斷方法:通過解直線方程與圓錐曲線方程聯(lián)立得到的方程組進(jìn)行判斷.
弦長公式:|AB|=|x1-x2|= |y1-y2|.
8.解決范圍、最值問題的常用解法
(1)數(shù)形結(jié)合法:利用待求量的幾何意義,確定出極端位置后,數(shù)形結(jié)合求解.
(2)構(gòu)建不等式法:利用已知或隱含的不等關(guān)系,構(gòu)建以待求量為元的不等式求解.
(3)構(gòu)建函數(shù)法:先引入變量構(gòu)建以待求量為因變量的函數(shù),再求其值域.
9.定點(diǎn)問題的思路
(1)動(dòng)直線l過定點(diǎn)問題,解法:設(shè)動(dòng)直線方程(斜率存在)為y=kx+t,由題設(shè)條件將t用k表示為t=mk,得y=k(x+m),故動(dòng)直線過定點(diǎn)(-m,0).
(2)動(dòng)曲線C過定點(diǎn)問題,解法:引入?yún)⒆兞拷⑶€C的方程,再根據(jù)其對(duì)參變量恒成立,令其系數(shù)等于零,得出定點(diǎn).
10.求解定值問題的兩大途徑
(1)
→
(2)先將式子用動(dòng)點(diǎn)坐標(biāo)或動(dòng)線中的參數(shù)表示,再利用其滿足的約束條件使其絕對(duì)值相等的正負(fù)項(xiàng)抵消或分子、分母約分得定值.
11.解決存在性問題的解題步驟
第一步:先假設(shè)存在,引入?yún)⒆兞?,根?jù)題目條件列出關(guān)于參變量的方程(組)或不等式(組);
第二步:解此方程(組)或不等式(組),若有解則存在,若無解則不存在;
第三步:得出結(jié)論.
1.不能準(zhǔn)確區(qū)分直線傾斜角的取值范圍以及斜率與傾斜角的關(guān)系,導(dǎo)致由斜率的取值范圍確定傾斜角的范圍時(shí)出錯(cuò).
2.易忽視直線方程的幾種形式的限制條件,如根據(jù)直線在兩軸上的截距相等設(shè)方程時(shí),忽視截距為0的情況,直接設(shè)為+=1;再如,過定點(diǎn)P(x0,y0)的直線往往忽視斜率不存在的情況直接設(shè)為y-y0=k(x-x0)等.
3.討論兩條直線的位置關(guān)系時(shí),易忽視系數(shù)等于零時(shí)的討論導(dǎo)致漏解,如兩條直線垂直時(shí),一條直線的斜率不存在,另一條直線斜率為0.
4.在解析幾何中,研究兩條直線的位置關(guān)系時(shí),要注意有可能這兩條直線重合;在立體幾何中提到的兩條直線,一般可理解為它們不重合.
5.求解兩條平行線之間的距離時(shí),易忽視兩直線系數(shù)不相等,而直接代入公式,導(dǎo)致錯(cuò)解.
6.在圓的標(biāo)準(zhǔn)方程中,誤把r2當(dāng)成r;在圓的一般方程中,忽視方程表示圓的條件.
7.易誤認(rèn)兩圓相切為兩圓外切,忽視兩圓內(nèi)切的情況導(dǎo)致漏解.
8.利用橢圓、雙曲線的定義解題時(shí),要注意兩種曲線的定義形式及其限制條件.如在雙曲線的定義中,有兩點(diǎn)是缺一不可的:其一,絕對(duì)值;其二,2a<|F1F2|.如果不滿足第一個(gè)條件,動(dòng)點(diǎn)到兩定點(diǎn)的距離之差為常數(shù),而不是差的絕對(duì)值為常數(shù),那么其軌跡只能是雙曲線的一支.
9.易混淆橢圓的標(biāo)準(zhǔn)方程與雙曲線的標(biāo)準(zhǔn)方程,尤其是方程中a,b,c三者之間的關(guān)系,導(dǎo)致計(jì)算錯(cuò)誤.
10.已知雙曲線的漸近線方程求雙曲線的離心率時(shí),易忽視討論焦點(diǎn)所在坐標(biāo)軸導(dǎo)致漏解.
11.直線與圓錐曲線相交的必要條件是它們構(gòu)成的方程組有實(shí)數(shù)解,消元后得到的方程中要注意:二次項(xiàng)的系數(shù)是否為零,判別式Δ≥0的限制.尤其是在應(yīng)用根與系數(shù)的關(guān)系解決問題時(shí),必須先有“判別式Δ≥0”;在求交點(diǎn)、 弦長、中點(diǎn)、斜率、對(duì)稱或存在性問題時(shí)都應(yīng)在“Δ>0”下進(jìn)行.
1.直線2mx-(m2+1)y-=0的傾斜角的取值范圍為( )
A.[0,π) B.∪
C. D.∪
答案 C
解析 由已知可得m≥0,直線的斜率k=.當(dāng)m=0時(shí),k=0;當(dāng)m>0時(shí),k==≤=1,又因?yàn)閙>0,所以01,所以半圓x2+(y-1)2=1(x≤0)上的點(diǎn)到直線x-y-1=0的距離的最大值為+1,到直線x-y-1=0的距離的最小值為點(diǎn)(0,0)到直線x-y-1=0的距離,為,
所以a-b=+1-=+1.
4.直線3x+4y-5=0與圓x2+y2=4相交于A,B兩點(diǎn),則弦AB的長等于( )
A.4 B.3 C.2 D.
答案 C
解析 由于圓x2+y2=4的圓心為O(0,0),半徑r=2,而圓心O(0,0)到直線3x+4y-5=0的距離d==1,∴|AB|=2=2=2.
5.與圓O1:x2+y2+4x-4y+7=0和圓O2:x2+y2-4x-10y+13=0都相切的直線條數(shù)是( )
A.4 B.3 C.2 D.1
答案 B
解析 O1(-2,2),r1=1,O2(2,5),r2=4,
∴|O1O2|=5=r1+r2,
∴圓O1和圓O2外切,
∴與圓O1和圓O2都相切的直線有3條.故選B.
6.設(shè)O為坐標(biāo)原點(diǎn),P是以F為焦點(diǎn)的拋物線y2=2px(p>0)上任意一點(diǎn),M是線段PF上的點(diǎn),且|PM|=2|MF|,則直線OM的斜率的最大值為( )
A. B. C. D.1
答案 C
解析 如圖,
由題意可知F,設(shè)P點(diǎn)坐標(biāo)為,
顯然,當(dāng)y0<0時(shí),kOM<0;
當(dāng)y0>0時(shí),kOM>0,要求kOM的最大值,不妨設(shè)y0>0,則=+=+=+(-)=+=,kOM==≤=,當(dāng)且僅當(dāng)y=2p2時(shí),等號(hào)成立,故選C.
7.已知拋物線y2=8x的準(zhǔn)線與雙曲線-=1(a>0)相交于A,B兩點(diǎn),點(diǎn)F為拋物線的焦點(diǎn),△ABF為直角三角形,則雙曲線的離心率為( )
A.3 B.2 C. D.
答案 A
解析 依題意知,
拋物線的準(zhǔn)線為x=-2,代入雙曲線方程得
y=,
不妨設(shè)A.
∵△FAB是等腰直角三角形,
∴=p=4,求得a=,
∴雙曲線的離心率為e====3,
故選A.
8.若點(diǎn)O和點(diǎn)F分別為橢圓+=1的中心和左焦點(diǎn),點(diǎn)P為橢圓上的任意一點(diǎn),則的最大值為( )
A.2 B.3 C.6 D.8
答案 C
解析 由題意得F(-1,0),設(shè)點(diǎn)P(x0,y0),
則y=3(-2≤x0≤2).
=x0(x0+1)+y=x+x0+y
=x+x0+3
=(x0+2)2+2.
又因?yàn)椋?≤x0≤2,所以當(dāng)x0=2時(shí),取得最大值,最大值為6,故選C.
9.已知函數(shù)y=f(x)=ax+1-2(a>0且a≠1)的圖象恒過定點(diǎn)A,設(shè)拋物線E:y2=4x上任意一點(diǎn)M到準(zhǔn)線l的距離為d,則d+的最小值為( )
A.5 B. C. D.
答案 C
解析 當(dāng)x+1=0,即x=-1時(shí),y=-1,故A(-1,-1),設(shè)拋物線的焦點(diǎn)為F(1,0),根據(jù)拋物線的定義可知,當(dāng)F、A、M三點(diǎn)共線時(shí)d+的最小值為=.
10.我們把焦點(diǎn)相同,且離心率互為倒數(shù)的橢圓和雙曲線稱為一對(duì)“相關(guān)曲線”.已知F1,F(xiàn)2是一對(duì)相關(guān)曲線的焦點(diǎn),P是它們?cè)诘谝幌笙薜慕稽c(diǎn),當(dāng)∠F1PF2=30時(shí),這一對(duì)相關(guān)曲線中橢圓的離心率是( )
A.7-4 B.2-
C.-1 D.4-2
答案 B
解析 由題意設(shè)橢圓方程為+=1,
雙曲線方程為-=1,且c=c1.
由題意=1,(*)
由∠F1PF2=30及余弦定理,得
橢圓中:4c2=4a2-(2+)|PF1||PF2|,
雙曲線中:4c2=4a+(2-)|PF1||PF2|,
可得b=(7-4)b2,代入(*)式,得
c4=aa2=(c2-b)a2=(8-4)c2a2-(7-4)a4,
即e4-(8-4)e2+(7-4)=0,
得e2=7-4,即e=2-,故選B.
11.已知直線l:mx-y=1,若直線l與直線x+m(m-1)y=2垂直,則m的值為________;動(dòng)直線l:mx-y=1被圓C:x2-2x+y2-8=0截得的最短弦長為________.
答案 0或2 2
解析 由兩直線垂直的充要條件得m1+(-1)m(m-1)=0,∴m=0或m=2;圓的半徑為3,動(dòng)直線l過定點(diǎn)(0,-1),當(dāng)圓心(1,0)到直線的距離最長,即d==時(shí),弦長最短,此時(shí)弦長為2=2.
12.已知直線l:mx+y+3m-=0與圓x2+y2=12交于A,B兩點(diǎn),過A,B分別作l的垂線與x軸交于C,D兩點(diǎn),若|AB|=2,則|CD|=________.
答案 4
解析 設(shè)AB的中點(diǎn)為M,由題意知,圓的半徑R=2,|AB|=2,所以|OM|=3,解得m=-,
由解得A(-3,),B(0,2),
則AC的直線方程為y-=-(x+3),BD的直線方程為y-2=-x,令y=0,解得C(-2,0),D(2,0),所以|CD|=4.
13.已知F1,F(xiàn)2是雙曲線-=1的焦點(diǎn),PQ是過焦點(diǎn)F1的弦,且PQ的傾斜角為60,那么|PF2|+|QF2|-|PQ|的值為________.
答案 16
解析 由雙曲線方程-=1知,2a=8,
由雙曲線的定義,得|PF2|-|PF1|=2a=8,①
|QF2|-|QF1|=2a=8,②
①+②得|PF2|+|QF2|-(|QF1|+|PF1|)=16.
∴|PF2|+|QF2|-|PQ|=16.
14.在直線y=-2上任取一點(diǎn)Q,過Q作拋物線x2=4y的切線,切點(diǎn)分別為A,B,則直線AB恒過定點(diǎn)________.
答案 (0,2)
解析 設(shè)Q(t,-2),A(x1,y1),B(x2,y2),拋物線方程變?yōu)閥=x2,則y′=x,則在點(diǎn)A處的切線方程為y-y1=x1(x-x1),化簡得y=x1x-y1,同理,在點(diǎn)B處的切線方程為y=x2x-y2.又點(diǎn)Q(t,-2)的坐標(biāo)滿足這兩個(gè)方程,代入得-2=x1t-y1,-2=x2t-y2,則說明A(x1,y1),B(x2,y2)都滿足方程-2=xt-y,即直線AB的方程為y-2=tx,因此直線AB恒過定點(diǎn)(0,2).
15.已知過點(diǎn)A(0,1)且斜率為k的直線l與圓C:(x-2)2+(y-3)2=1交于M,N兩點(diǎn).
(1)求k的取值范圍;
(2)若=12,其中O為坐標(biāo)原點(diǎn),求|MN|.
解 (1)由題設(shè)可知,直線l的方程為y=kx+1,
因?yàn)閘與圓C交于兩點(diǎn),所以<1.
解得0,
所以x1+x2=,x1x2=.
=x1x2+y1y2=(1+k2)x1x2+k(x1+x2)+1
=+8.
由題設(shè)可得+8=12,解得k=1,
經(jīng)檢驗(yàn),滿足Δ>0.
所以l的方程為y=x+1.
故圓心C在l上,所以|MN|=2.
16.已知圓F1:(x+1)2+y2=r2與圓F2:(x-1)2+y2=(4-r)2(0|F1F2|,
因此曲線E是長軸長2a=4,焦距2c=2的橢圓,且b2=a2-c2=3,所以曲線E的方程為+=1.
(2)由曲線E的方程,得上頂點(diǎn)M(0,),記A(x1,y1),B(x2,y2),由題意知,x1≠0,x2≠0,若直線AB的斜率不存在,則直線AB的方程為x=x1,故y1=-y2,且y=y(tǒng)=3,因此kMAkMB==-=,與已知不符,因此直線AB的斜率存在,設(shè)直線AB:y=kx+m,代入橢圓E的方程+=1,得(3+4k2)x2+8kmx+4(m2-3)=0.(*)
因?yàn)橹本€AB與曲線E有公共點(diǎn)A,B,
所以方程(*)有兩個(gè)非零不等實(shí)根x1,x2,
所以x1+x2=-,x1x2=,
又kAM==,
kMB==,
由kAMkBM=,
得4(kx1+m-)(kx2+m-)=x1x2,
即(4k2-1)x1x2+4k(m-)(x1+x2)+4(m-)2=0,
所以4(m2-3)(4k2-1)+4k(m-)(-8km)+4(m-)2(3+4k2)=0,
化簡得m2-3m+6=0,故m=或m=2,
結(jié)合x1x2≠0知,m=2,即直線AB恒過定點(diǎn)N(0,2).
(3)由Δ>0且m=2得k<-或k>,
又S△ABM=|S△ANM-S△BNM|=|MN||x2-x1|
=
=
==≤,
當(dāng)且僅當(dāng)4k2-9=12,即k=時(shí),△ABM的面積最大,最大值為.
鏈接地址:http://m.appdesigncorp.com/p-3929077.html