九年級數(shù)學下冊 第24章 圓 24.2 圓的基本性質(zhì) 第2課時 垂徑分弦同步練習(含解析) 滬科版.doc
《九年級數(shù)學下冊 第24章 圓 24.2 圓的基本性質(zhì) 第2課時 垂徑分弦同步練習(含解析) 滬科版.doc》由會員分享,可在線閱讀,更多相關《九年級數(shù)學下冊 第24章 圓 24.2 圓的基本性質(zhì) 第2課時 垂徑分弦同步練習(含解析) 滬科版.doc(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。
24.2 第2課時 垂徑分弦 一、選擇題 1.下列說法正確的是( ) A.平分弦的直徑垂直于弦 B.垂直于弦的直線必過圓心 C.垂直于弦的直徑平分弦 D.平分弦的直徑平分弦所對的弧 2.xx瀘州如圖K-4-1,AB是⊙O的直徑,弦CD⊥AB于點E.若AB=8,AE=1,則弦CD的長是( ) 圖K-4-1 A. B.2 C.6 D.8 3.如圖K-4-2,若⊙O的弦AB垂直平分半徑OC,則四邊形OACB是( ) 圖K-4-2 A.正方形 B.菱形 C.矩形 D.平行四邊形 4.如圖K-4-3,在⊙O中,弦AB⊥AC,OD⊥AB于點D,OE⊥AC于點E,若AB=16 cm,AC=12 cm,則⊙O的半徑OA為( ) 圖K-4-3 A.14 cm B.12 cm C.10 cm D.8 cm 5.xx太湖期末如圖K-4-4,以點O為圓心的兩個同心圓中,小圓的弦AB的延長線交大圓于點C,若AB=4,BC=1,則下列整數(shù)與圓環(huán)面積最接近的是( ) 圖K-4-4 A.10 B.13 C.16 D.19 6.在直徑為200 cm的圓柱形油槽內(nèi)裝入一些油以后,截面如圖K-4-5.若油面的寬AB=160 cm,則油的最大深度為( ) 圖K-4-5 A.40 cm B.60 cm C.80 cm D.100 cm 7.xx池州月考“圓材埋壁”是我國古代著名的數(shù)學著作《九章算術》中的一個問題:“今有圓材,埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長一尺,問鋸幾何?”用現(xiàn)代的數(shù)學語言表述是:“如圖K-4-6,CD為⊙O的直徑,弦AB⊥CD,垂足為E,CE=1寸,AB=10寸,求直徑CD”.依題意,CD的長為( ) 圖K-4-6 A.12寸 B.13寸 C.24寸 D.26寸 8.xx安順已知⊙O的直徑CD=10 cm,AB是⊙O的弦,AB⊥CD,垂足為M,且AB=8 cm,則AC的長為( ) A.2 cm B.4 cm C.2 cm或4 cm D.2 cm或4 cm 二、填空題 9.如圖K-4-7,在⊙O中,弦AB=6,圓心O到AB的距離OC=2,則⊙O的半徑為________. 圖K-4-7 10.如圖K-4-8所示,⊙O的直徑CD=10 cm,且AB⊥CD,垂足為P,AB=8 cm,則sin∠OAP=__________. 圖K-4-8 11.如圖K-4-9,AB是⊙O的弦,AB的長為8,P是優(yōu)弧上的一個動點(不與點A,B重合),過點O作OC⊥AP于點C,OD⊥PB于點D,則CD的長為________. 圖K-4-9 12.如圖K-4-10,在△ABC中,已知∠ACB=130,∠BAC=20,BC=2,以點C為圓心,CB為半徑的圓交AB于點D,則BD的長為________. 圖K-4-10 13.如圖K-4-11,將半徑為2的圓形紙片折疊后,圓弧恰好經(jīng)過圓心O,則折痕AB的長為______. 圖K-4-11 三、解答題 14.xx合肥瑤海區(qū)期末如圖K-4-12,AB是⊙O的直徑,弦CD⊥AB,垂足為E,連接AC.若∠A=22.5,CD=8,求⊙O的半徑. 圖K-4-12 15.巫山長江公路大橋是一個中承式鋼管砼圓弧形拱橋,主跨度AB=492米,拱橋最高點C距水面100米,求該拱橋的半徑是多少米. 圖K-4-13 16.如圖K-4-14,在平面直角坐標系中,以點C(0,3)為圓心,5為半徑作圓,交x軸于A,B兩點,交y軸正半軸于點P,以點P為頂點的拋物線經(jīng)過A,B兩點. (1)求A,B兩點的坐標; (2)求此拋物線的表達式. 圖K-4-14 實踐應用 今年夏天,臺風來襲,某地被雨水“圍攻”.如圖K-4-15,當?shù)赜幸还皹驗閳A弧形,跨度AB=60 m,拱高PM=18 m,當洪水泛濫,水面跨度縮小到30 m時要采取緊急措施.當?shù)販y量人員測得水面A1B1到拱頂?shù)木嚯x只有4 m,則此時是否需要采取緊急措施?請說明理由. 圖K-4-15 詳解詳析 [課堂達標] 1.[答案] C 2.[解析] B 由題意,得OE=OA-AE=4-1=3,CE=CD==,CD=2CE=2 .故選B. 3.[解析] B 由題意可知OC與AB互相垂直平分,則四邊形OACB是菱形. 4.[解析] C 由垂徑定理可知AD=AB=8 cm,OD=AE=AC=6 cm,∴OA==10 cm. 5.[解析] C 過點O作OD⊥AB,垂足為D,則AD=2,DC=2+1=3, S圓環(huán)=π(OC2-OA2)=π(OD2+DC2-OD2-AD2)=π(9-4)=5π≈15.7≈16. 故選C. 6.[解析] A 如圖,連接OA,過點O作OE⊥AB于點M,交⊙O于點E. ∵⊙O的直徑為200 cm,AB=160 cm, ∴OA=OE=100 cm,AM=80 cm, ∴OM=60 cm, ∴ME=OE-OM=100-60=40(cm). 7.[解析] D 如圖,設CD的長為2x寸,則半徑OC=x寸,∵CD為⊙O的直徑,弦AB⊥CD于點E,AB=10寸,∴AE=BE=AB=5寸.連接OA,則OA=x寸,根據(jù)勾股定理得x2=52+(x-1)2,解得x=13,則CD=2x=213=26(寸). 8.[解析] C 連接AC,AO, ∵⊙O的直徑CD=10 cm,AB⊥CD,AB=8 cm, ∴AM=4 cm,OD=OC=5 cm. 當點C的位置如圖①所示時, ∵OA=5 cm,AM=4 cm,CD⊥AB, ∴OM=3 cm, ∴CM=OC+OM=5+3=8(cm), ∴AC=4 cm; 當點C的位置如圖②所示時,同理可得OM=3 cm, ∵OC=5 cm, ∴MC=5-3=2(cm). 在Rt△AMC中,AC=2 cm. 綜上,AC的長為4 cm或2 cm. 9.[答案] 10.[答案] [解析] ∵AB⊥CD, ∴AP=BP=AB=8=4(cm). 在Rt△OAP中,OA=CD=5 cm, ∴OP=3 cm,∴sin∠OAP==. 11.[答案] 4 [解析] ∵OC⊥AP,OD⊥PB,∴由垂徑定理得AC=PC,PD=BD,∴CD是△APB的中位線,∴CD=AB=8=4. 12.[答案] 2 [解析] 如圖,過點C作CE⊥AB于點E. 在△ABC中,∠B=180-∠A-∠ACB=180-20-130=30. 在Rt△BCE中,∵∠CEB=90,∠B=30,BC=2,∴BE=BCcos30=. ∵CE⊥BD,∴DE=BE,∴BD=2BE=2 . 故答案為2 . 13.[答案] 2 [解析] 如圖,過點O作OD⊥AB于點D,連接OA. ∵OD⊥AB,OA=2, ∴OD=OA=1. 在Rt△OAD中,AD===,∴AB=2AD=2 .故答案為2 . 14.解:如圖,連接OC, ∵AB是⊙O的直徑,弦CD⊥AB,CD=8, ∴CE=DE=CD=4. ∵OA=OC, ∴∠COE=2∠A=45, ∴△COE為等腰直角三角形, ∴OC=CE=4 , 即⊙O的半徑為4 . 15.解:如圖,設弧AB所在圓的圓心為O,半徑為R米, 連接OA,OC,則OC⊥AB,設D為垂足, 根據(jù)垂徑定理,知D是AB的中點,C是弧AB的中點, 由題意可知AB=492米,CD=100米, 所以AD=AB=492=246(米), OD=OC-CD=(R-100)米. 在Rt△OAD中,根據(jù)勾股定理,得 OA2=AD2+OD2,即R2=2462+(R-100)2, 解得R=352.58. 因此,該拱橋的半徑是352.58米. 16.解:(1)如圖,連接AC,由題意得CO=3,AC=5. ∵CO⊥AO, ∴△ACO是直角三角形且∠AOC是直角, ∴AO===4. 由題意可得y軸是拋物線的對稱軸, ∴BO=AO=4, ∴點A的坐標為(-4,0),點B的坐標為(4,0). (2)依題意得OP=CO+CP=3+5=8, ∴點P的坐標是(0,8). 設拋物線的表達式為y=ax2+8,代入點A的坐標,得a(-4)2+8=0,解得a=-. ∴該拋物線的表達式為y=-x2+8. [素養(yǎng)提升] 解:此時不需要采取緊急措施.理由: 如圖所示,連接OA,OA1. 由題意可得AB=60 m,PM=18 m,PN=4 m,OP⊥AB,OP⊥A1B1, 由垂徑定理可得AM=MB=30 m,A1N=B1N. 設OA=OA1=OP=R m, 在Rt△AMO中,由勾股定理可得 AO2=AM2+MO2, 即R2=302+(R-18)2, 解得R=34. ∵PN=4 m,OP=34 m, ∴ON=30 m. 在Rt△ONA1中,由勾股定理可得 A1N===16(m), ∴A1B1=32 m>30 m, 故此時不需要采取緊急措施.- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關 鍵 詞:
- 九年級數(shù)學下冊 第24章 24.2 圓的基本性質(zhì) 第2課時 垂徑分弦同步練習含解析 滬科版 九年級 數(shù)學 下冊 24 基本 性質(zhì) 課時 垂徑分弦 同步 練習 解析
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權(quán),請勿作他用。
鏈接地址:http://m.appdesigncorp.com/p-3392229.html