廣西2020版高考數(shù)學(xué)一輪復(fù)習(xí) 第七章 不等式、推理與證明 7.3 合情推理與演繹推理課件 文.ppt
7.3合情推理與演繹推理,知識(shí)梳理,雙基自測(cè),2,1,1.合情推理(1)定義:歸納推理和類(lèi)比推理都是根據(jù)已有的事實(shí),先經(jīng)過(guò)觀察、分析、比較、聯(lián)想,再進(jìn)行歸納、,然后提出猜想的推理,我們把它們統(tǒng)稱(chēng)為合情推理.,類(lèi)比,知識(shí)梳理,雙基自測(cè),2,1,(2)歸納推理與類(lèi)比推理,部分對(duì)象,全部對(duì)象,個(gè)別事實(shí),一般結(jié)論,某些類(lèi)似特征,某些已知特征,部分,整體,個(gè)別,一般,特殊,特殊,知識(shí)梳理,雙基自測(cè),2,1,知識(shí)梳理,雙基自測(cè),2,1,2.演繹推理(1)定義:從一般性的原理出發(fā),推出某個(gè)特殊情況下的結(jié)論,我們把這種推理稱(chēng)為演繹推理.簡(jiǎn)言之,演繹推理是由一般到的推理.(2)“三段論”是演繹推理的一般模式,包括大前提已知的一般原理;小前提所研究的特殊情況;結(jié)論根據(jù)一般原理,對(duì)特殊情況作出的判斷.,特殊,2,知識(shí)梳理,雙基自測(cè),3,4,1,5,1.下列結(jié)論正確的打“”,錯(cuò)誤的打“”.(1)歸納推理得到的結(jié)論不一定正確,類(lèi)比推理得到的結(jié)論一定正確.()(2)歸納推理與類(lèi)比推理都是由特殊到一般的推理.()(3)在類(lèi)比時(shí),平面中的三角形與空間中的平行六面體作為類(lèi)比對(duì)象較為合適.()(4)演繹推理是由特殊到一般再到特殊的推理.()(5)演繹推理在大前提、小前提和推理形式都正確時(shí),得到的結(jié)論一定正確.(),答案,知識(shí)梳理,雙基自測(cè),2,3,4,1,5,2.若大前提是:任何實(shí)數(shù)的平方都大于0,小前提是:aR,結(jié)論是:a2>0,則這個(gè)演繹推理出錯(cuò)在()A.大前提B.小前提C.推理過(guò)程D.沒(méi)有出錯(cuò),答案,解析,知識(shí)梳理,雙基自測(cè),2,3,4,1,5,3.(教材習(xí)題改編P7T1)如圖,根據(jù)圖中的數(shù)構(gòu)成的規(guī)律可知a表示的數(shù)是()A.12B.48C.60D.144,答案,解析,知識(shí)梳理,雙基自測(cè),2,3,4,1,5,4.甲、乙、丙、丁四名同學(xué)一起去向老師詢(xún)問(wèn)成語(yǔ)競(jìng)賽的成績(jī).老師說(shuō):你們四人中有2名優(yōu)秀,2名良好,我現(xiàn)在給甲看乙、丙的成績(jī),給乙看丙的成績(jī),給丁看甲的成績(jī),看后甲對(duì)大家說(shuō):我還是不知道我的成績(jī).根據(jù)以上信息,則()A.乙可以知道四人的成績(jī)B.丁可以知道四人的成績(jī)C.乙、丁可以知道對(duì)方的成績(jī)D.乙、丁可以知道自己的成績(jī),答案,解析,知識(shí)梳理,雙基自測(cè),2,3,4,1,5,5.(教材習(xí)題改編P7T2)在平面內(nèi),若兩個(gè)正三角形的邊長(zhǎng)的比為12,則它們的面積比為14.類(lèi)似地,在空間中,若兩個(gè)正四面體的棱長(zhǎng)的比為12,則它們的體積比為.,答案,知識(shí)梳理,雙基自測(cè),2,3,4,1,5,自測(cè)點(diǎn)評(píng)1.合情推理包括歸納推理和類(lèi)比推理,其結(jié)論是猜想,不一定正確,若要確定其正確性,則需要證明.2.在進(jìn)行類(lèi)比推理時(shí),要從本質(zhì)上去類(lèi)比,只從一點(diǎn)表面現(xiàn)象去類(lèi)比,就會(huì)犯機(jī)械類(lèi)比的錯(cuò)誤.3.應(yīng)用三段論解決問(wèn)題時(shí),要明確什么是大前提、小前提,如果前提與推理形式是正確的,結(jié)論必定是正確的.若大前提或小前提錯(cuò)誤,則所得結(jié)論也是錯(cuò)誤的.4.合情推理是發(fā)現(xiàn)結(jié)論的推理;演繹推理是證明結(jié)論的推理.,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,例1(1)(2018山東濟(jì)南一模)如圖,將平面直角坐標(biāo)系中的格點(diǎn)(橫、縱坐標(biāo)均為整數(shù)的點(diǎn))按如下規(guī)則標(biāo)上標(biāo)簽:原點(diǎn)處標(biāo)數(shù)字0,記為a0;點(diǎn)(1,0)處標(biāo)數(shù)字1,記為a1;點(diǎn)(1,-1)處標(biāo)數(shù)字0,記為a2;點(diǎn)(0,-1)處標(biāo)數(shù)字-1,記為a3;點(diǎn)(-1,-1)處標(biāo)數(shù)字-2,記為a4;點(diǎn)(-1,0)處標(biāo)數(shù)字-1,記為a5;點(diǎn)(-1,1)處標(biāo)數(shù)字0,記為a6;點(diǎn)(0,1)處標(biāo)數(shù)字1,記為a7;以此類(lèi)推,格點(diǎn)坐標(biāo)為(i,j)的點(diǎn)處所標(biāo)的數(shù)字為i+j(i,j均為整數(shù)).記Sn=a1+a2+an,則S2018=.,-249,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,(2)有一個(gè)奇數(shù)組成的數(shù)陣排列如下:1371321591523111725192729則第30行從左到右第3個(gè)數(shù)是.思考如何進(jìn)行歸納推理?,1051,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,解析:(1)設(shè)an對(duì)應(yīng)點(diǎn)的坐標(biāo)為(x,y),由歸納推理可知,an=x+y.第一圈從點(diǎn)(1,0)到點(diǎn)(1,1)共8個(gè)點(diǎn),由對(duì)稱(chēng)性可得a1+a2+a8=0;第二圈從點(diǎn)(2,1)到點(diǎn)(2,2)共16個(gè)點(diǎn),由對(duì)稱(chēng)性可得a9+a24=0,第n圈共有8n個(gè)點(diǎn),這8n項(xiàng)的和也為零.前n圈共有8+16+8n=4n(n+1)個(gè)點(diǎn),可得前22圈共有2024個(gè)數(shù),S2024=0,S2018=S2024-(a2024+a2023+a2019),a2024所對(duì)應(yīng)點(diǎn)的坐標(biāo)為(22,22),a2024=22+22,a2023所對(duì)應(yīng)點(diǎn)的坐標(biāo)為(21,22),a2023=21+22,a2022=20+22,a2021=19+22,a2020=18+22,a2019=17+22,可得a2024+a2019=249,故S2018=0-249=-249.,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,(2)先求第30行的第1個(gè)數(shù),再求第30行的第3個(gè)數(shù).觀察每一行的第一個(gè)數(shù),由歸納推理可得第30行的第1個(gè)數(shù)是1+4+6+8+10+60=929.又第n行從左到右的第2個(gè)數(shù)比第1個(gè)數(shù)大2n,第3個(gè)數(shù)比第2個(gè)數(shù)大2n+2,所以第30行從左到右的第2個(gè)數(shù)比第1個(gè)數(shù)大60,第3個(gè)數(shù)比第2個(gè)數(shù)大62,故第30行從左到右第3個(gè)數(shù)是929+60+62=1051.,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,解題心得1.歸納推理的類(lèi)型及相應(yīng)方法常見(jiàn)的歸納推理分為數(shù)的歸納和形的歸納兩類(lèi):(1)數(shù)的歸納包括數(shù)字歸納和式子歸納,解決此類(lèi)問(wèn)題時(shí),需要細(xì)心觀察,尋求相鄰項(xiàng)及項(xiàng)與序號(hào)之間的關(guān)系,同時(shí)還要聯(lián)系相關(guān)的知識(shí),如等差數(shù)列、等比數(shù)列等.(2)形的歸納主要包括圖形數(shù)目歸納和圖形變化規(guī)律歸納.,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,2.破解歸納推理的思維步驟(1)發(fā)現(xiàn)共性,通過(guò)觀察特例發(fā)現(xiàn)某些相似性(特例的共性或一般規(guī)律);(2)歸納推理,把這種相似性推廣為一個(gè)明確表述的一般命題(猜想);(3)檢驗(yàn),得結(jié)論,對(duì)所得的一般性命題進(jìn)行檢驗(yàn).一般地,“求同存異”“逐步細(xì)化”“先粗后精”是求解由特殊結(jié)論推廣到一般結(jié)論型創(chuàng)新題的基本技巧.,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,(2)如圖所示的一系列正方形將點(diǎn)陣分割,從內(nèi)向外擴(kuò)展,其模式如下:4=224+12=16=424+12+20=36=624+12+20+28=64=82由上述事實(shí),請(qǐng)推測(cè)關(guān)于n的等式為.,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,答案:(1)1000(2)4+12+20+(8n-4)=(2n)2(nN*),考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,(2)由題圖中的正方形將點(diǎn)陣分割,從內(nèi)向外擴(kuò)展,其模式如下:4=224+12=16=424+12+20=36=624+12+20+28=64=82歸納可得:等式左邊是一個(gè)以8為公差,以4為首項(xiàng)的等差數(shù)列,右邊是正偶數(shù)的平方,故第n個(gè)式子為:4+12+20+(8n-4)=(2n)2(nN*).,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,A,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,(2)如圖在平面幾何中,ABC的內(nèi)角C的平分線CE分AB所成線段的比為.把這個(gè)結(jié)論類(lèi)比到空間:在三棱錐A-BCD中(如圖),平面DEC平分二面角A-CD-B且與AB相交于E,則得到類(lèi)比的結(jié)論是.思考如何進(jìn)行類(lèi)比推理?,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,解題心得在進(jìn)行類(lèi)比推理時(shí),不僅要注意形式的類(lèi)比,還要注意方法的類(lèi)比,且要注意以下兩點(diǎn):(1)找兩類(lèi)對(duì)象的對(duì)應(yīng)元素,如:三角形對(duì)應(yīng)三棱錐,圓對(duì)應(yīng)球,面積對(duì)應(yīng)體積,平面對(duì)應(yīng)空間,等差數(shù)列對(duì)應(yīng)等比數(shù)列等等;(2)找對(duì)應(yīng)元素的對(duì)應(yīng)關(guān)系,如:兩條邊(直線)垂直對(duì)應(yīng)線面垂直或面面垂直,邊相等對(duì)應(yīng)面積相等,加對(duì)應(yīng)乘,乘對(duì)應(yīng)乘方,減對(duì)應(yīng)除,除對(duì)應(yīng)開(kāi)方等等.,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,(2)在平面幾何中,“若ABC的三邊長(zhǎng)分別為a,b,c,內(nèi)切圓半徑為r,則三角形的面積為SABC=(a+b+c)r”,拓展到空間,類(lèi)比上述結(jié)論,“若四面體A-BCD的四個(gè)面的面積分別為S1,S2,S3,S4,內(nèi)切球的半徑為r,則四面體的體積為”.,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,例3(2018廣東中山期末)一名法官在審理一起盜竊案時(shí),四名嫌疑人甲、乙、丙、丁分述如下:甲說(shuō):“罪犯在乙、丙、丁三人之中”,乙說(shuō):“我沒(méi)有作案,是丙偷的”,丙說(shuō):“在甲和乙中有一個(gè)人是罪犯”,丁說(shuō):“乙說(shuō)的是事實(shí)”.經(jīng)調(diào)查核實(shí),這四人中只有一人是罪犯,并且得知有兩人說(shuō)的是真話,兩人說(shuō)的是假話,由此可判斷罪犯是()A.甲B.乙C.丙D.丁思考演繹推理的一般模式是什么?,答案,解析,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,解題心得1.演繹推理是由一般到特殊的推理,常用的一般模式為三段論,一般地,若大前提不明確時(shí),可找一個(gè)使結(jié)論成立的充分條件作為大前提.2.在應(yīng)用三段論推理來(lái)證明問(wèn)題時(shí),首先應(yīng)該明確什么是問(wèn)題中的大前提和小前提.在演繹推理中,只要前提和推理形式是正確的,結(jié)論必定是正確的.注意:在證明的過(guò)程中,往往大前提是隱含條件.3.三段論證明的基本模式(1)大前提已知的一般原理;(2)小前提所研究的特殊情況;(3)結(jié)論根據(jù)一般原理對(duì)特殊情況做出的判斷.,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,對(duì)點(diǎn)訓(xùn)練3(2018東北三省三校一模)甲、乙、丙三名教師分別在哈爾濱、長(zhǎng)春、沈陽(yáng)的三所中學(xué)里教不同的學(xué)科A,B,C,已知:甲不在哈爾濱工作,乙不在長(zhǎng)春工作;在哈爾濱工作的教師不教C學(xué)科;在長(zhǎng)春工作的教師教A學(xué)科;乙不教B學(xué)科.可以判斷乙教的學(xué)科是.,答案,解析,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,1.合情推理與演繹推理的區(qū)別(1)歸納推理是由特殊到一般的推理;(2)類(lèi)比推理是由特殊到特殊的推理;(3)演繹推理是由一般到特殊的推理;(4)從推理的結(jié)論來(lái)看,合情推理的結(jié)論不一定正確,有待證明;而演繹推理若前提和推理形式正確,得到的結(jié)論一定正確.2.在數(shù)學(xué)研究中,得到一個(gè)新結(jié)論前,合情推理能幫助猜測(cè)和發(fā)現(xiàn)結(jié)論.在證明一個(gè)數(shù)學(xué)結(jié)論之前,合情推理常常能為證明提供思路與方向.數(shù)學(xué)結(jié)論的證明主要通過(guò)演繹推理來(lái)進(jìn)行.3.“三段論”式的演繹推理一定要保證大前提正確,且小前提是大前提的子集關(guān)系,這樣經(jīng)過(guò)正確推理,才能得出正確結(jié)論.,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,1.演繹推理常用來(lái)證明和推理數(shù)學(xué)問(wèn)題,要注意推理過(guò)程的嚴(yán)密性、書(shū)寫(xiě)格式的規(guī)范性.2.合情推理運(yùn)用猜想時(shí)不能憑空想象,要有猜想或拓展依據(jù).,