2019-2020年高中數(shù)學(xué) 綜合素質(zhì)檢測4 北師大版選修1-1.doc
2019-2020年高中數(shù)學(xué) 綜合素質(zhì)檢測4 北師大版選修1-1一、選擇題(本大題共10個小題,每小題5分,共50分,在每小題給出的四個選項中,只有一項是符合題目要求的)1函數(shù)f(x)(x3)ex的單調(diào)遞減區(qū)間是()A(,2)B(0,3)C(1,4)D(2,)答案A解析f(x)(x3)ex(x3)(ex)(x2)ex,令f(x)<0,解得x<2,即函數(shù)f(x)的單調(diào)遞減區(qū)間是(,2)2已知f(x)x22xf(1),則f(0)等于()A0B4C2D2答案B解析f(x)2x2f(1),f(1)22f(1),即f(1)2,f(x)2x4,f(0)4.3函數(shù)f(x)x33x26x10在區(qū)間1,1上的最大值是()A3B6C2D0答案B解析f(x)3x26x63(x1)23,f(x)>0在1,1上恒成立,即f(x)在1,1上是單調(diào)遞增的,故當(dāng)x1時,f(x)max6.4(xx浙江杜橋中學(xué)期中)已知函數(shù)f(x)x3ax23x9在x3時取得極值,則a()A2B3C4D5答案D解析f (x)3x22ax3,由條件知,x3是方程f (x)0的實數(shù)根,a5.5(xx淄博市臨淄區(qū)學(xué)分認定考試)下列函數(shù)中,x0是其極值點的函數(shù)是()Af(x)x3 Bf(x)cosxCf(x)sinxx Df(x)答案B解析對于A,f (x)3x20恒成立,在R上單調(diào)遞減,沒有極值點;對于B,f (x)sinx,當(dāng)x(,0)時,f (x)<0,當(dāng)x(0,)時,f (x)>0,故f(x)cosx在x0的左側(cè)區(qū)間(,0)內(nèi)單調(diào)遞減,在其右側(cè)區(qū)間(0,)內(nèi)單調(diào)遞增,所以x0是f(x)的一個極小值點;對于C,f (x)cosx10恒成立,在R上單調(diào)遞減,沒有極值點;對于D,f(x)在x0沒有定義,所以x0不可能成為極值點,綜上可知,答案選B.6已知函數(shù)f(x)x3ax2x1在(,)上是單調(diào)函數(shù),則實數(shù)a的取值范圍是()A(,)(,)B(,)C(,)D,答案D解析f (x)3x22ax1,f(x)在(,)上是單調(diào)函數(shù),且f (x)的圖像是開口向下的拋物線,f (x)0恒成立,4a2120,a,故選D.7如圖是函數(shù)yf(x)的導(dǎo)函數(shù)的圖像,給出下面四個判斷:f(x)在區(qū)間2,1上是增函數(shù);x1是f(x)的極小值點;f(x)在區(qū)間1,2上是增函數(shù),在區(qū)間2,4上是減函數(shù);x2是f(x)的極小值點其中,所有正確判斷的序號是()A BC D答案B解析由函數(shù)yf(x)的導(dǎo)函數(shù)的圖像可知:(1)f(x)在區(qū)間2,1上是減函數(shù),在1,2上是增函數(shù),在2,4上是減函數(shù);(2)f(x)在x1處取得極小值,在x2處取得極大值故正確8(xx銀川九中二模)已知f(x)x2sin(x),f(x)為f(x)的導(dǎo)函數(shù),則f(x)的圖像是()答案A解析f(x)x2cosx,f(x)xsinx,1sinx1,且f (x)f (x),f (x)為奇函數(shù),排除B、D;令g(x)xsinx,則g(x)cosx,當(dāng)x(0,)時,g(x)<0,g(x)在(0,)上為減函數(shù),即f (x)在(0,)上為減函數(shù),排除C,故選A.9(xx華池一中高二期中)若關(guān)于x的方程x33xm0在0,2上有根,則實數(shù)m的取值范圍是()A2,2 B0,2C2,0 D(,2)(2,)答案A解析令f(x)x33xm,則f (x)3x233(x1)(x1),顯然當(dāng)x<1或x>1時,f (x)>0,f(x)單調(diào)遞增,當(dāng)1<x<1時,f (x)<0,f(x)單調(diào)遞減,在x1時,f(x)取極大值f(1)m2,在x1時,f(x)取極小值f(1)m2.f(x)0在0,2上有解,2m2.10(xx天門市調(diào)研)已知函數(shù)f(x)asinxbcosx在x時取得極值,則函數(shù)yf(x)是()A偶函數(shù)且圖像關(guān)于點(,0)對稱B偶函數(shù)且圖像關(guān)于點(,0)對稱C奇函數(shù)且圖像關(guān)于點(,0)對稱D奇函數(shù)且圖像關(guān)于點(,0)對稱答案D解析f(x)的圖像關(guān)于x對稱,f(0)f(),ba,f(x)asinxbcosxasinxacosxasin(x),f(x)asin(x)asin(x)asinx.顯然f(x)是奇函數(shù)且關(guān)于點(,0)對稱,故選D.二、填空題(本大題共5個小題,每小題5分,共25分,將正確答案填在題中橫線上)11已知函數(shù)f(x)x3x2cxd有極值,則c的取值范圍為_答案c<解析f(x)x2xc且f(x)有極值,f(x)0有不等的實數(shù)根,即14c>0.解得c<.12函數(shù)yf(x)lnxx在區(qū)間(0,e上的最大值為_答案1解析f(x)1,令f(x)0,即x1.當(dāng)x變化時,f(x),f(x)的變化情況如下表:x(0,1)1(1,e)ef(x)0f(x)單調(diào)遞增極大值1單調(diào)遞減1e由于f(e)1e,而1>1e,從而f(x)maxf(1)1.13(xx沈陽質(zhì)檢)已知函數(shù)f(x)x(xa)(xb)的導(dǎo)函數(shù)為f(x),且f(0)4,則a22b2的最小值為_答案8解析f(x)x(xa)(xb),f(x)(xa)(xb)x(xa)(xb),f(0)ab4,a22b22ab8.14若函數(shù)yx36x2m的極大值等于13,則實數(shù)m等于_答案19解析y3x212x,由y0,得x0或x4,容易得出當(dāng)x4時函數(shù)取得極大值,所以43642m13,解得m19.15(xx哈六中期中)已知函數(shù)f(x2)是偶函數(shù),x>2時f (x)>0恒成立(其中f (x)是函數(shù)f(x)的導(dǎo)函數(shù)),且f(4)0,則不等式(x2)f(x3)<0的解集為_答案(,3)(2,1)解析函數(shù)yf(x2)是偶函數(shù),其圖像關(guān)于y軸對稱,yf(x2)的圖像向右平移兩個單位得到y(tǒng)f(x)的圖像,函數(shù)yf(x)的圖像關(guān)于直線x2對稱,x>2時,f (x)>0,f(x)在(2,)上單調(diào)遞增,在(,2)上單調(diào)遞減,又f(4)0,f(0)0,0<x<4時,f(x)<0,x<0或x>4時,f(x)>0,由(x2)f(x3)<0得(1)或(2)由(1)得x<3;由(2)得2<x<1,綜上知,不等式的解集為(,3)(2,1)三、解答題(本大題共6小題,共75分,前4題每題12分,20題13分,21題14分)16已知函數(shù)f(x)x3ax2b(aR,bR)若a>0,且f(x)的極大值為5,極小值為1,求f(x)的解析式答案f(x)x33x21解析f(x)x3ax2b,f(x)3x22ax.令f(x)0,得x0或x.又a>0,<0.當(dāng)x<或x>0時,f(x)>0;當(dāng)<x<0時,f(x)<0.f(x)在(,)和(0,)上是增函數(shù),在(0,)上是減函數(shù)f()是f(x)的極大值,f(0)是f(x)的極小值,即f()()3a()2b5;f(0)b1,解得a3,b1.所求的函數(shù)解析式是f(x)x33x21.17已知函數(shù)f(x)x3(1a)x2a(a2)xb(a,bR)(1)若函數(shù)f(x)的圖像過原點,且在原點處的切線斜率是3,求a,b的值;(2)若函數(shù)f(x)在區(qū)間(1,1)上不單調(diào),求a的取值范圍答案(1)a3或a1,b0(2)(5,)(,1)解析(1)f(x)3x22(1a)xa(a2),由于函數(shù)f(x)的圖像過原點,則f(0)0,從而b0,又函數(shù)圖像在原點處的切線斜率是3,則f(0)3,所以a(a2)3,解得a3或a1.(2)令f(x)0,即3x22(1a)xa(a2)0,解得x1a,x2.由于函數(shù)f(x)在區(qū)間(1,1)上不單調(diào),則有,或,解得,或.所以a的取值范圍是(5,)(,1)18(xx北京文,19)設(shè)函數(shù)f(x)kln x,k0.(1)求f(x)的單調(diào)區(qū)間和極值;(2)證明:若f(x)存在零點,則f(x)在區(qū)間(1,上僅有一個零點答案(1)f(x)的單調(diào)遞減區(qū)間是(0,),單調(diào)遞增區(qū)間是(,);極小值(2)略解析(1)由f(x)kln x,(k0)得f(x)x.由f(x)0解得x.f(x)與f(x)在區(qū)間(0,)上的情況如下:x(0,)(,)f(x)0f(x)所以,f(x)的單調(diào)遞減區(qū)間是(0,),單調(diào)遞增區(qū)間是(,);f(x)在x處取得極小值f().(2)由(1)知,f(x)在區(qū)間(0,)上的最小值為f().因為f(x)存在零點,所以0,從而ke.當(dāng)ke時,f(x)在區(qū)間(1,)上單調(diào)遞減,且f()0,所以x是f(x)在區(qū)間(1,上的唯一零點當(dāng)ke時,f(x)在區(qū)間(0,)上單調(diào)遞減,且f(1)0,f()0,所以f(x)在區(qū)間(1,上僅有一個零點綜上可知,若f(x)存在零點,則f(x)在區(qū)間( 1,上僅有一個零點. 19在邊長為60cm的正方形鐵片的四角上切去相等的正方形,再把它的邊沿虛線折起,做成一個無蓋的方底箱子如圖,箱底的邊長是多少時,箱子的容積最大?最大容積是多少?答案箱底的邊長是40cm時,容積最大,最大容積16000cm3解析設(shè)箱底邊長為xcm,則箱高hcm,得箱子容積V(x)x2h(0<x<60),V(x)60x(0<x<60)令V(x)60x0,解得x0(舍去),x40,并求得V(40)16000.由題意可知,當(dāng)x過小(接近0)或過大(接近60)時,箱子容積很小,故當(dāng)x40cm時,箱子的容積最大,最大容積是16000cm3.20已知函數(shù)f(x)2lnxx2ax(aR)(1)當(dāng)a2時,求f(x)的圖像在x1處的切線方程;(2)若函數(shù)g(x)f(x)axm在,e上有兩個零點,求實數(shù)m的取值范圍答案(1)y2x1(2)(1,2解析(1)當(dāng)a2時,f(x)2lnxx22x,f(x)2x2,切點坐標(biāo)為(1,1),切線的斜率kf(1)2,則切線方程為y12(x1),即y2x1.(2)g(x)2lnxx2m,則g(x)2x.x,e,當(dāng)g(x)0時,x1.當(dāng)<x<1時,g(x)>0;當(dāng)1<x<e時,g(x)<0.故g(x)在x1處取得極大值g(1)m1.又g()m2,g(e)m2e2,g(e)g()4e2<0,則g(e)<g()g(x)在,e上的最小值是g(e)而g(x)在,e上有兩個零點,則,解得1<m2,實數(shù)m的取值范圍是(1,221(xx韶關(guān)市曲江一中月考)已知函數(shù)f(x)ax3cxd(a0)是R上的奇函數(shù),當(dāng)x1時,f(x)取得極值2.(1)求函數(shù)f(x)的解析式;(2)求函數(shù)f(x)的單調(diào)區(qū)間和極大值;(3)證明:對任意x1、x2(1,1),不等式|f(x1)f(x2)|<4恒成立答案(1)f(x)x33x(2)增區(qū)間(,1),(1,);減區(qū)間(1,1)極大值2(3)略解析(1)f(x)是R上的奇函數(shù),f(x)f(x),即ax3cxdax3cxd,dd,d0(或由f(0)0得d0)f(x)ax3cx,f (x)3ax2c,又當(dāng)x1時,f(x)取得極值2,即解得f(x)x33x.(2)f (x)3x233(x1)(x1),令f (x)0,得x1,當(dāng)1<x<1時,f (x)<0,函數(shù)f(x)單調(diào)遞減;當(dāng)x<1或x>1時,f (x)>0,函數(shù)f(x)單調(diào)遞增;函數(shù)f(x)的遞增區(qū)間是(,1)和(1,);遞減區(qū)間為(1,1)因此,f(x)在x1處取得極大值,且極大值為f(1)2.(3)由(2)知,函數(shù)f(x)在區(qū)間1,1上單調(diào)遞減,且f(x)在區(qū)間1,1上的最大值為Mf(1)2.最小值為mf(1)2.對任意x1、x2(1,1),|f(x1)f(x2)|<Mm4成立即對任意x1、x2(1,1),不等式|f(x1)f(x2)|<4恒成立