曼徹斯特編解碼電路設(shè)計

上傳人:緣*** 文檔編號:28634293 上傳時間:2021-09-04 格式:DOC 頁數(shù):49 大?。?78.50KB
收藏 版權(quán)申訴 舉報 下載
曼徹斯特編解碼電路設(shè)計_第1頁
第1頁 / 共49頁
曼徹斯特編解碼電路設(shè)計_第2頁
第2頁 / 共49頁
曼徹斯特編解碼電路設(shè)計_第3頁
第3頁 / 共49頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《曼徹斯特編解碼電路設(shè)計》由會員分享,可在線閱讀,更多相關(guān)《曼徹斯特編解碼電路設(shè)計(49頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、I 中南大學(xué) 本科生畢業(yè)論文(設(shè)計) 題 目 曼徹斯特編解碼電路設(shè)計 學(xué)生姓名 李天棟 指導(dǎo)教師 肖大光 婁田心 學(xué) 院 信息科學(xué)與工程學(xué)院 專業(yè)班級 通信工程 03級 2班 完成時間 2007年 5月 II 目錄 目錄 .I 摘要 .III ABSTRACT .IV 第一章 緒論 .1 1.1 項目背景 .1 1.2 項目研究內(nèi)容和任務(wù) .1 1.3 論文各部分主要內(nèi)容 .1 第二章 曼徹斯特碼的原理及其編碼規(guī)則 .3 2.1 曼徹斯特碼簡介及其編碼規(guī)則 .3 2.2 曼徹斯特碼原理 .3 2.3 曼徹斯特碼的應(yīng)用范圍 .5 2.3.1 曼徹斯特碼在 LAN中的應(yīng)用 .7 2.3.2 曼徹斯

2、特碼在測井系統(tǒng)中的應(yīng)用 .7 第三章 曼徹斯特編解碼方案 .9 3.1 編碼電路 .9 3.2 解碼電路 .15 3.3 同步信號提取電路 .16 3.3.1 利用電壓比較器整形曼碼 .18 3.3.2 利用微分電路檢出曼碼跳變沿 .19 3.3.3 全波整流電路 .21 3.3.4 窄帶濾波電路 .24 3.3.5 鎖相環(huán) .27 第四章 運用 VHDL語言對同步方法仿真 .30 4.1 VHDL語言簡介 .30 4.2 VHDL語言仿真 .30 第五章 PROTEL 軟件繪制電路圖簡介 .33 5.1 PROTEL軟件簡介 .33 III 5.2 電路圖繪制 .33 第六章 結(jié)論與展望 .

3、36 參考文獻(xiàn) .37 致謝 .38 附錄 .39 IV 摘要 在電信領(lǐng)域,曼徹斯特碼是一種數(shù)據(jù)通訊線性碼,它的每一個數(shù)據(jù)比特都是由 至少一次電壓轉(zhuǎn)換的形式所表示的。曼徹斯特編碼因此被認(rèn)為是一種自定時碼。自 定時意味著數(shù)據(jù)流的精確同步是可行的。每一個比特都準(zhǔn)確的在一預(yù)先定義時間時 期的時間中被傳送。曼徹斯特編碼已經(jīng)被許多高效率且被廣泛使用的電信標(biāo)準(zhǔn)所采 用,例如以太網(wǎng)電訊標(biāo)準(zhǔn). 曼徹斯特編碼是一種超越傳統(tǒng)數(shù)字傳輸?shù)男诺谰幋a技術(shù), 由于其具有隱含時鐘、去除了零頻率信號的特性使得它在石油勘探測井中得到廣泛 的應(yīng)用。 報告論述了曼徹斯特碼的原理,介紹了其編碼規(guī)則。對其特點和應(yīng)用范圍進(jìn)行 了說明。提出

4、了曼徹斯特編解碼方案,重點運用VHDL語言對同步信號提取電路進(jìn)行 了硬件仿真。以及對使用Protel軟件繪制電路圖進(jìn)行了介紹。系統(tǒng)成功實現(xiàn)了曼徹 斯特碼數(shù)據(jù)傳送的要求而且電路簡單,性能穩(wěn)定。 關(guān)鍵詞: 曼徹斯特碼,同步信號,VHDL 仿真 IV ABSTRACT The Manchester code is one kind of data communication linearity codes. All its dada bits are shown by at least once voltage changing. This is why Manchester code is cal

5、led self-acting timing code. Self-acting timing means the feasibility of the precise synchronization of data stream. Each bit is transmitted accurately in the period that defined in advance. Manchester codes have been adopted by many telecom standards that have high efficiency and are been used wide

6、ly, such as Ethernet communication standard. Manchester code is a coding technology for channel that exceeds the traditional data transmission. The characteristics that including crytic clock and eliminating the signals in zero frequency have made it been used in the detecting well of oil widely. Th

7、e thesis mainly discusses the theory of the Manchester code and its coding rules, it also explains its characteristics and use range. The theory puts forward the Manchester coding and decoding proposals and conducts the hardware simulating on the synchronized signal pick-up module with the VHDL lang

8、uage , it also uses the Protel software to make the system circuit diagram. This proposal has successfully met the requirement of Manchester code date transfer and it is also sample in the circuit and stable in the capability. KEY WORDS: Manchester code,VHDL,Synchronism signal 曼徹斯特編解碼電路設(shè)計 第一章 緒論 1 第

9、一章 緒論 1.1 項目背景 測井技術(shù)發(fā)展到今天,已經(jīng)發(fā)生了很大的變化:一是由模擬測井技術(shù)發(fā)展到了 數(shù)字測井技術(shù);二是由數(shù)字測井技術(shù)發(fā)展到了數(shù)控測井技術(shù)。進(jìn)入90年代,成像測 井技術(shù)獲得了較大的發(fā)展,測井系統(tǒng)中需要傳送的數(shù)據(jù)信息量越來越大,為此必須 解決數(shù)據(jù)的高速傳輸與正確接收兩個問題,如相關(guān)編碼技術(shù)、纜芯多路復(fù)用技術(shù)、 基帶均衡技術(shù)等用以提高數(shù)據(jù)傳輸速率和降低誤碼率.在測井?dāng)?shù)據(jù)傳輸系統(tǒng)中,由 于曼徹斯特碼既能提供足夠的定時分量,又無直流漂移,編碼過程相對簡單,因而 曼徹斯特(Manchester)碼是測井?dāng)?shù)據(jù)傳輸中常用的編碼方式之一。曼徹斯特碼, 又稱數(shù)字雙相碼或分相碼。在曼徹斯特編碼中,每

10、一位的中間有一跳變,位中間的 跳變既作時鐘信號,又作數(shù)據(jù)信號;從高到低跳變表示1,從低到高跳變表示 0。曼徹斯特編碼是將時鐘和數(shù)據(jù)包含在數(shù)據(jù)流中,在傳輸代碼信息的同時,也 將時鐘同步信號一起傳輸?shù)綄Ψ?,每位編碼中有一跳變,不存在直流分量,因此具 有自同步能力和良好的抗干擾性能。但每一個碼元都被調(diào)成兩個電平,所以數(shù)據(jù)傳 輸速率只有調(diào)制速率的1/2。曼徹斯特碼是主要用在數(shù)據(jù)同步傳輸?shù)囊环N編碼方式。 由于曼徹斯特碼有如此多的優(yōu)點,所以在現(xiàn)代通信中得到了廣泛的應(yīng)用。本課題設(shè) 計了一種利用曼徹斯特編碼實現(xiàn)數(shù)據(jù)傳輸?shù)耐ㄐ畔到y(tǒng)。本文的主要工作就是研究曼 徹斯特碼編碼器的設(shè)計及實現(xiàn)。 1.2 項目研究內(nèi)容和任

11、務(wù) 本項目主要研究曼徹斯特碼編碼器的硬件設(shè)計和實現(xiàn)。為了能順利完成曼徹斯 特碼的編解碼任務(wù),實現(xiàn)數(shù)據(jù)傳輸它應(yīng)該包括這樣幾個部分:編碼電路,解碼電路, 以及同步信號提取電路。 在本次設(shè)計中,為了驗證電路系統(tǒng)能否順利完成曼徹斯特碼的編解碼功能,我 們采取了比軟件仿真更加直觀,與最終產(chǎn)品更加貼近的硬件驗證方式。在該方式中 需要使用VHDL語言對系統(tǒng)進(jìn)行仿真。 1.3 論文各部分主要內(nèi)容 第二章詳細(xì)說明了曼徹斯特碼編碼的特點,規(guī)則以及應(yīng)用。第三章介紹了曼徹 斯特編解碼系統(tǒng)的總體結(jié)構(gòu)和功能概述、硬件組成。第四章詳細(xì)說明了利用VHDL語 曼徹斯特編解碼電路設(shè)計 第一章 緒論 2 言對系統(tǒng)的同步信號提取模塊

12、進(jìn)行仿真的過程。第五章介紹了利用PROTEL的電路圖 繪制。第六章是對本次設(shè)計的小結(jié)和展望。 曼徹斯特碼編解碼電路設(shè)計 第二章 曼徹斯特碼原理及其編碼規(guī)則 3 第二章 曼徹斯特碼的原理及其編碼規(guī)則 2.1 曼徹斯特碼簡介及其編碼規(guī)則 在電信領(lǐng)域,曼徹斯特碼,(也稱作相位碼或者 PE)是一種數(shù)據(jù)通訊線性碼,它 的每一個數(shù)據(jù)比特都是由至少一次電壓轉(zhuǎn)換的形式所表示的曼徹斯特編碼被因此被 認(rèn)為是一種自定時碼。自定時意味著數(shù)據(jù)流的精確同步是可行的。每一個比特都準(zhǔn) 確的在一預(yù)先定義時間時期的時間中被傳送。 但是,今天有許許多多的復(fù)雜的編碼方法(例如 8B/10B編碼),在達(dá)到同等目的 情況下只需要更少帶寬

13、負(fù)荷并且只有更少的同步信號相位模糊. 二進(jìn)制碼與曼徹斯特碼波形的對比關(guān)系如下。 圖 2.1 二進(jìn)制碼與曼徹斯特碼波形 2.2 曼徹斯特碼原理 用于數(shù)字基帶傳輸?shù)拇a型種類較多,Manchester碼是其中常用的一種。 Manchester碼是一種用跳變沿(而非電平)來表示要傳輸?shù)亩M(jìn)制信息(0或1), 一般規(guī)定在位元中間用下跳變表示“1”,用上跳變表示“0”. 曼徹斯特編碼被被 認(rèn)為是一種自定時碼自定時意味著數(shù)據(jù)流的精確同步是可行的。每一個比特都準(zhǔn)確 的在一預(yù)先定義時間時期的時間中被傳送。 曼徹斯特編碼提供了一種簡單的方法在長時間段內(nèi)沒有電平跳變的情況下, 仍然能夠?qū)θ我獾亩M(jìn)制序列進(jìn)行編碼,并

14、且防止在這種情況下同步時鐘信號的丟 失以及防止低通模擬電路中低頻直流飄移所引起的比特錯誤。如果保證傳送的編碼 曼徹斯特碼編解碼電路設(shè)計 第二章 曼徹斯特碼原理及其編碼規(guī)則 4 交流信號的直流分量為零并且能夠防止中繼信號的基線漂移,那么很容易實現(xiàn)信號 的恢復(fù)和防止能量的浪費。曼徹斯特碼具有豐富的位定時信息。 以下是在不同P值情況下的功率譜仿真圖。 圖2.2為P=0.5時的功率譜圖。 這樣的情況出現(xiàn)在“0”和“1”的概率比為1: 1的情況,比如編碼前二進(jìn)制隨 機(jī)碼為全“0”或全“1”的情況。 p=0.5時曼徹斯特碼功率譜: 圖2.2 p=0.5時曼徹斯特碼功率譜 圖2.3為P=0.4時的曼徹斯特碼

15、的功率譜圖,圖2.4為P=0.4時曼徹斯特碼的功率 譜中的線譜圖。從圖中可以看到有線譜資源,表明有可提取的位定時信息。 當(dāng)P=0.4時,編碼前二進(jìn)制隨機(jī)序列中的“1”的概率為0.4. 曼徹斯特碼編解碼電路設(shè)計 第二章 曼徹斯特碼原理及其編碼規(guī)則 5 圖 2.3 p=0.4 時曼徹斯特碼功率譜 如果一曼徹斯特編碼信號,沿著通訊信道某處進(jìn)行跳變,它從一個變化狀態(tài)到另 一個變化狀態(tài).但是,這樣情況能被差分曼徹斯特編碼輕易克服。 曼徹斯特編碼的缺點在于為每一比特進(jìn)行電平跳變的結(jié)果是曼徹斯特信號編碼 所要求的帶寬相比異步通訊要高一倍,并且其頻譜也更寬。雖然曼徹斯特編碼是一 種高度可靠的通信方式,帶寬要求

16、被視為其不利之處,在達(dá)到的同樣的目標(biāo)的情況 下,其更好的編碼表現(xiàn)和更小帶寬要求使得最現(xiàn)代化的通訊協(xié)議隨著更現(xiàn)化的線性 編碼不斷發(fā)展。 曼徹斯特碼所要考慮的一件事就是發(fā)射機(jī)與接收機(jī)的同步問題,初看起來它可 能是半比特周期的錯誤將導(dǎo)致接收機(jī)終端得到相反的輸出,但是進(jìn)一步考慮表明了 典型數(shù)據(jù)在這個情況下將導(dǎo)致違例碼。使用硬件能探測到這些違例碼,運用這些信 息實現(xiàn)精確的同步正確的解釋這些有關(guān)數(shù)據(jù)。 2.3 曼徹斯特碼的應(yīng)用范圍 曼徹斯特編碼已經(jīng)被許多高效率且被廣泛使用的電信標(biāo)準(zhǔn)所采用,例如以太網(wǎng) 電訊標(biāo)準(zhǔn). 曼徹斯特編碼是一種超越傳統(tǒng)數(shù)字傳輸?shù)男诺谰幋a技術(shù),由于其具有隱 含時鐘、去除了零頻率信號的特性

17、使得它在石油勘探測井中也得到廣泛的應(yīng)用。 曼徹斯特碼編解碼電路設(shè)計 第二章 曼徹斯特碼原理及其編碼規(guī)則 6 在 1949年第一次提出了的曼徹斯特編碼方案,是一個被應(yīng)用在物理層的同步 時鐘編碼技術(shù)用來將時鐘和數(shù)據(jù)編碼統(tǒng)一在一個同步比特數(shù)據(jù)流中。在這項技術(shù)中,在 電纜上被傳送的真實二元數(shù)據(jù)不是以一連串的邏輯序列 1或者 0來表示的(這項技 術(shù)也是一種不歸零碼 NRZ)。這些要傳送的數(shù)據(jù)比特被轉(zhuǎn)換成一個略微不同格式,比 起直接用二進(jìn)制碼(i.e. NRZ)來有許多的優(yōu)勢。在曼徹斯特編碼方案中,比特周期 中間的 0到 1跳變表示邏輯 0,比特周期中間的 1到 0的跳變表示邏輯 1。注意信 號跳變不一定

18、在bitboundaries比特邊界(一個比特和另外一個比特)之間的分 界線,但是總是發(fā)生在每個比特的中間位置.曼徹斯特編碼的規(guī)則列出如下: 初始數(shù)據(jù) 發(fā)送的值 邏輯 0 0 到 1 (比特中心向上跳變) 邏輯 1 1到0 (比特中心向下跳變 圖 2.4 曼徹斯特編碼的規(guī)則 注意:在有些情形下你將看到編碼方案相反的情況。把邏輯 0表示為 0到 1的 跳變.兩種定義已經(jīng)并存很多年. 以太網(wǎng)藍(lán)皮書和美國電氣及電子工程師學(xué)會標(biāo)準(zhǔn) IEEE (10 Mbps)描繪了邏輯 0被發(fā)送成是 0到 1的跳變,邏輯 1表示成 1到 0的跳 變。(零被表示成電纜上的更小的負(fù)電壓).因為很多物理層采用一種翻轉(zhuǎn)線性驅(qū)

19、 動器把二進(jìn)制數(shù)據(jù)轉(zhuǎn)換成電信號,這個信號在線纜上與編碼器的輸出恰恰相反。差 分物理層傳輸(例如 10BT)不能容忍這種反轉(zhuǎn)。 下面的簡圖展示了一個典型的被寄送數(shù)據(jù)(1,1,0,1,0,0)編碼后的相應(yīng)的曼徹斯 特編碼信號的發(fā)送 圖 2.5 (1,1,0,1,0,0)編碼后的相應(yīng)的曼徹斯特編碼信號 方波波形表曼徹斯特碼比特流承載一個比特序列 110100. 曼徹斯特編碼可以選擇性的看成為一種相位編碼,每一個比特被編碼成正向 90 度的階段相位轉(zhuǎn)變或者負(fù) 90度的相位轉(zhuǎn)變.曼徹斯特碼依次可以看作是一種相位碼。 曼徹斯特編碼信號包含頻繁的電平跳變,這使得它可以允許接收器運用數(shù)字鎖相環(huán) 提取精確的時鐘

20、信號并且實現(xiàn)每個比特的定時和正確解碼。為了保證數(shù)字鎖相環(huán)可 曼徹斯特碼編解碼電路設(shè)計 第二章 曼徹斯特碼原理及其編碼規(guī)則 7 靠運作,被傳送的比特流必須包含有高密度的比特跳變。曼徹斯特編碼保證了這一 點,可以應(yīng)用數(shù)字鎖相環(huán)精確提取時鐘信號。相位曼徹斯特編碼能消耗大約兩倍的 原來信號(20 MHz)的帶寬。這就是作為電平頻繁跳變的代價,對于一個 10 Mbps局 域網(wǎng),信號頻譜值在 5和 20 MHz之間。 2.3.1 曼徹斯特碼在LAN中的應(yīng)用 曼徹斯特碼由于其特殊的性能,被廣泛應(yīng)用于小功率無線傳輸系統(tǒng)中。曼徹斯 特編碼是申行數(shù)據(jù)傳輸?shù)囊环N重耍的編碼方式。曼徹斯特編碼最大的優(yōu)點是:數(shù)據(jù) 和同步

21、時鐘統(tǒng)一編碼,曼碼中含有豐富的時鐘信號,直流分量基本為零,接收器能 夠較容易恢復(fù)同步時鐘,并同步解調(diào)出數(shù)據(jù),具有很好的抗干擾性能,這使它更適 合于信道傳輸。IEEE802.4 令牌總線標(biāo)準(zhǔn)采用了此種傳輸技術(shù)。 曼徹斯特編碼被使用作一個以太網(wǎng)局域網(wǎng)的物理層,對于一個以太網(wǎng)局域網(wǎng)用 同軸電纜作為傳輸介質(zhì),額外的帶寬不是重要的問題。CAT5e 纜線的帶寬有限,為 了達(dá)到 100 Mbps的數(shù)據(jù)速率需要更高效率的編碼方法,必要使用一個 4b/5b MLT 編碼方案。它使用(代替曼徹斯特編碼使用的兩個電平值)三個信號電平值,因此可 以實現(xiàn) 100 Mbps信號的數(shù)據(jù)速率且只需要占僅 31 MHz的帶寬.

22、 IEEE-802.3u規(guī)范 采用三電平符號傳輸系統(tǒng)取代 10BaseT的二電平曼徹斯特編碼,能實現(xiàn)快速以太網(wǎng) 的兼容性。這種方案采用一種最初為 FDDI(光纖分布式數(shù)據(jù)接口)系統(tǒng)開發(fā)的 4B/5B編碼。這種編碼將 4位數(shù)據(jù)半字節(jié)轉(zhuǎn)換為 5位編碼,用以實現(xiàn)錯誤檢測和增 加控制碼,例如數(shù)據(jù)流起始和終止定界符。將符號率提高到 125 Mbps,可補(bǔ)償 4B/5B內(nèi)在的 20%數(shù)據(jù)傳輸效率,但是這種帶寬增加所產(chǎn)生的頻譜會被曼徹斯特編 碼擴(kuò)展到數(shù)百兆赫。衰減損耗和 EMC問題使這種方法無法使用,所以 100BaseTX使 用了 MLT-3(多電平轉(zhuǎn)換三電平)載波。吉比特以太網(wǎng)使用五電平值和 8b/10

23、b編碼 方案,在有限的電纜帶寬下更有效率,在 100 MHz的帶寬以內(nèi)提供 1Gbps的數(shù)據(jù)速 率。 2.3.2 曼徹斯特碼在測井系統(tǒng)中的應(yīng)用 測井技術(shù)發(fā)展到今天,已經(jīng)發(fā)生了很大的變化:一是由模擬測井技術(shù)發(fā)展到了 數(shù)字測井技術(shù);二是由數(shù)字測井技術(shù)發(fā)展到了數(shù)控測井技術(shù)。進(jìn)入90年代,成像測 井技術(shù)獲得了較大的發(fā)展,測井系統(tǒng)中需要傳送的數(shù)據(jù)信息量越來越大,為此必須 解決數(shù)據(jù)的高速傳輸與正確接收兩個問題,如相關(guān)編碼技術(shù)、纜芯多路復(fù)用技術(shù)、 基帶均衡技術(shù)等用以提高數(shù)據(jù)傳輸速率和降低誤碼率.在測井?dāng)?shù)據(jù)傳輸系統(tǒng)中,由 于曼徹斯特碼既能提供足夠的定時分量,又無直流漂移,編碼過程相對簡單,因而 曼徹斯特(Ma

24、nchester)碼是測井?dāng)?shù)據(jù)傳輸中常用的編碼方式之一。 曼徹斯特碼編解碼電路設(shè)計 第二章 曼徹斯特碼原理及其編碼規(guī)則 8 目前,在實際的工程測井中,常采用Manchester編譯碼器HD-15530把測井?dāng)?shù)據(jù) 轉(zhuǎn)換為Manchester碼及把Manchester碼解碼為數(shù)據(jù).由于HD-15530發(fā)送數(shù)據(jù)輸入及 接受數(shù)據(jù)輸出均為串行方式,并且Manchester編碼、解碼是以16位數(shù)據(jù)為基本單位, 邏輯上要求使用16位的并入串出移位寄存器和16位的串入并出移位寄存器與單片機(jī) 接口,這樣硬件結(jié)構(gòu)比較復(fù)雜,儀器成本較高.考慮到測井?dāng)?shù)據(jù)傳輸速率不高,可 用單片機(jī)軟件來實現(xiàn)Manchester編碼和解

25、碼功能. 在油田測井中,井下儀在井下 采集大量信息,并傳送給地面測井系統(tǒng);但井下儀到地面段信道的傳輸性能并不好, 常用的NRZ碼不適合在這樣的信道里傳輸,而且NRZ碼含有豐富的直流分量,容易引 起滾筒的磁化,因而選用了另外一種編碼 曼徹斯特碼。曼徹斯特編碼串行數(shù) 據(jù)傳輸?shù)囊环N重要的編碼方式。和最常用的NRZ碼相比,曼徹斯特碼具有很多優(yōu)點。 例如,消除了NRZ碼的直流成分,具有時鐘恢復(fù)和更好的抗干擾性能,這使它更適 合于信道傳輸。 但曼徹斯特碼的時序比較復(fù)雜,實現(xiàn)編解碼器和單片機(jī)的接口需要添加大量的 邏輯電路,給電路設(shè)計和調(diào)試帶來很多困難。使用CPLD可大大簡化這一過程。 CPLD(Comple

26、x Programmable Logic Devices)具有用戶可編程、時序可預(yù)測、速 度高和容易使用等優(yōu)點,這幾年得到了飛速發(fā)展和廣泛應(yīng)用。上至高性能CPU,下至 簡單的74電路,都可以用CPLD來實現(xiàn)。而且CPLD的可編程性,使修改和產(chǎn)品升級變 得十分方便。用戶可以根據(jù)原理圖或硬件描述語言自由地設(shè)計一個數(shù)字系統(tǒng),然后 通過軟件仿真,事先驗證設(shè)計的正確性。PCB完成以后,還可以利用PLD的在線修改 能力,隨時修改設(shè)計而不必改動硬件電路,從而大大縮短了設(shè)計和調(diào)試時間,減少 了PCB面積,提高了系統(tǒng)的可靠性. 曼徹斯特碼編解碼電路設(shè)計 第三章 曼徹斯特編解碼方案 9 第三章 曼徹斯特編解碼方案

27、 曼徹斯特編解碼電路由三個部分組成,分別是編碼電路模塊,解碼電路模塊, 和同步信號提取電路模塊。編碼電路模塊提供時鐘源,并且對輸入的待傳送原碼進(jìn) 行編碼,將其轉(zhuǎn)換成曼徹斯特碼并發(fā)送。同步時鐘信號提取電路模塊負(fù)責(zé)從接收到 的曼徹斯特碼中提取其中包含的同步時鐘信號,將其提供給解碼電路模塊進(jìn)行解碼。 解碼電路模塊用則是將接收到的曼徹斯特碼整形后利用同步時鐘提取電路模塊提供 的同步信號把它轉(zhuǎn)換成原碼輸出。三個相對獨立的模塊相互協(xié)同工作共同完成曼徹 斯特編解碼工作,同時相互獨立的模塊結(jié)構(gòu)有利于查找電路中存在的問題,便于維 護(hù)。 系統(tǒng)整體原理框圖如下: 時鐘源 整形電 路 微分電 路 窄帶濾 波電路 原碼

28、輸 入 全波整 流電路 占空比 調(diào)整電 路 同步電 路 編碼電 路 鎖相環(huán)跟 蹤 2 分 頻 整形電 路 解碼電 路 原碼輸 出 圖 3.1 曼徹斯特編解碼電路原理框圖 3.1 編碼電路 編碼電路的實現(xiàn),編碼電路模塊具體分為以下幾個部分:時鐘源,占空比調(diào)整 電路,同步電路,編碼電路。 結(jié)構(gòu)圖如下所示: 曼徹斯特碼編解碼電路設(shè)計 第三章 曼徹斯特編解碼方案 10 編碼輸入 曼碼 輸出 時鐘源 占空比調(diào) 整 編碼同步 圖 3.2 編碼電路模塊原理圖 對比曼徹斯特編碼與原碼波形,可以看出在理想狀況下,曼徹斯特碼在時鐘的 前半周期和原碼相同,后半周期和原碼相反。因此要用一個數(shù)據(jù)選擇器,在時鐘信 號為高

29、電平時,選擇原碼作為曼徹斯特編碼的信號,而時鐘信號為低電平時,選擇 原碼的反碼作為曼徹斯特編碼信號即可。但是上面的思路還有一定的問題。其一, 時鐘信號與原碼的信號起始位置不同。如果按照上面的思路編碼,就會在編碼時出 現(xiàn)錯誤情況。例如:1”的寬度與一般的寬度不同,導(dǎo)致之后的編碼全部出錯,顯 然編碼是錯誤的。在通信系統(tǒng)中,時鐘和信號往往是由電路的不同部分產(chǎn)生的,起 始時刻不同也是很正常的。在對信號進(jìn)行編碼前,用一個 D觸發(fā)器對信號進(jìn)行整形, 可以使信號和時鐘同步,而且能調(diào)整信號的脈寬,使信號的寬度為時鐘周期的整數(shù) 倍。當(dāng)時鐘的頻率和信號發(fā)送的波特率相等時,就只會在原碼中較寬(比時鐘周期 寬)的碼元

30、處產(chǎn)生一個誤碼,而較窄(比時鐘周期窄)的碼元處不會產(chǎn)生誤碼。很 明顯,原碼就是在時鐘的前半周期(高電平的時候)保持曼徹斯特的碼不變,而時鐘 后半周期,維持前半周期的電平不變,就恢復(fù)出原碼了 12,31。這個過程只要時鐘 相位調(diào)整得當(dāng),同樣可以用一個 D觸發(fā)器實現(xiàn)。綜上所述,編碼電路僅需要一個 D 觸發(fā)器,一個數(shù)據(jù)選擇器;而譯碼電路僅需要一個 D觸發(fā)器就可以實現(xiàn)。另外只需 要構(gòu)建一個占空比為 1/2,且頻率大于兩倍于信號速率的時鐘。硬件電路比較簡單, 使用的元器件也比較簡單,成本較低。而且可以方便地測試編碼。 編碼電路主要由時鐘電路模塊、占空比調(diào)整電路、編碼電路部分組成。時鐘信 號 產(chǎn)生很多時候

31、多是采用集成電路定時器 555產(chǎn)生,作定時器時,定時時間長。 曼徹斯特碼編解碼電路設(shè)計 第三章 曼徹斯特編解碼方案 11 555的靜態(tài)電流較小,一般為 80 LA左右。改變 R,R2,C 的值可得到任意頻率的時 鐘脈沖。由于電容 C的充放電時間常數(shù)不相等。因此電路的輸出波形為矩形脈沖, 脈沖的占空比隨頻率的變化而變化。 然而,555定時器作為時鐘源時,它的時鐘穩(wěn)定性不夠高,一般只有三個數(shù)量級, 而此處設(shè)計的曼徹斯特編解碼電路設(shè)計速率為100KBps,誤碼率要求0.001以下。要 求時鐘頻率為100 000Hz ,并且因為占空比調(diào)整電路實際上是一個二分頻電路,因 此時鐘源頻率要求達(dá)到200 00

32、0Hz.顯然,555定時器不能滿足要求。所以此處選用 了穩(wěn)定度高得多的晶體震蕩定時電路,精確度可達(dá)4五至9個數(shù)量級,完全符合電路 的要求。具體實際應(yīng)用中采用了比較常用性價比高的石英晶體正弦波振蕩電路。 3.1.1 石英晶體振蕩器 石英晶體振蕩器是高精度和高穩(wěn)定度的振蕩器,被廣泛應(yīng)用于彩電、計算機(jī)、 遙控器等各類振蕩電路中,以及通信系統(tǒng)中用于頻率發(fā)生器、為數(shù)據(jù)處理設(shè)備產(chǎn)生 時鐘信號和為特定系統(tǒng)提供基準(zhǔn)信號。 一、石英晶體振蕩器的基本原理 1、石英晶體振蕩器的結(jié)構(gòu) 石英晶體振蕩器是利用石英晶體(二氧化硅的結(jié)晶體)的壓電效應(yīng)制成的一種 諧振器件,它的基本構(gòu)成大致是:從一塊石英晶體上按一定方位角切下薄

33、片(簡稱 為晶片,它可以是正方形、矩形或圓形等),在它的兩個對應(yīng)面上涂敷銀層作為電 極,在每個電極上各焊一根引線接到管腳 上,再加上封裝外殼就構(gòu)成了石英晶體 諧振器,簡稱為石英晶體或晶體、晶振。其產(chǎn)品一般用金屬外殼封裝,也有用玻璃 殼、陶瓷或塑料封裝的。 2、壓電效應(yīng) 若在石英晶體的兩個電極上加一電場,晶片就會產(chǎn)生機(jī)械變形。反之,若在晶 片的兩側(cè)施加機(jī)械壓力,則在晶片相應(yīng)的方向上將產(chǎn)生電場,這種物理現(xiàn)象稱為壓 電效應(yīng)。如果在晶片的兩極上加交變電壓,晶片就會產(chǎn)生機(jī)械振動,同時晶片的機(jī) 械振動又會產(chǎn)生交變電場。在一般情況下,晶片機(jī)械振動的振幅和交變電場的振幅 非常微小,但當(dāng)外加交變電壓的頻率為某一

34、特定值時,振幅明顯加大,比其他頻率 下的振幅大得多,這種現(xiàn)象稱為壓電諧振,它與 LC回路的諧振現(xiàn)象十分相似。它 的諧振頻率與晶片的切割方式、幾何形狀、尺寸等有關(guān)。 3諧振頻率 從石英晶體諧振器的等效電路可知,它有兩個諧振頻率,即(1)當(dāng) L、C、R 支路發(fā)生串聯(lián)諧振時,它的等效阻抗最小(等于 R)。串聯(lián)揩振頻率用 fs表示,石 英晶體對于串聯(lián)揩振頻率 fs呈純阻性,(2)當(dāng)頻率高于 fs時 L、C、R 支路呈感 性,可與電容 C。發(fā)生并聯(lián)諧振,其并聯(lián)頻率用 fd表示。 曼徹斯特碼編解碼電路設(shè)計 第三章 曼徹斯特編解碼方案 12 二、石英晶體振蕩器的主要參數(shù) 標(biāo)稱頻率大都標(biāo)明在晶振外殼上。如常用

35、普通晶振標(biāo)稱頻率有:48kHz、500 kHz、503.5 kHz、1MHz40.50 MHz等,對于特殊要示,石英晶體對于串聯(lián)揩振頻 率fs呈純阻性,(2)當(dāng)頻率高于fs時L、C、R支路呈感性,可與電容C。發(fā)生并聯(lián) 諧振,其并聯(lián)頻率用fd表示。 根據(jù)石英晶體的等效電路,可定性畫出它的電抗頻率特性曲線如圖2e所示。 可見當(dāng)頻率低于串聯(lián)諧振頻率fs或者頻率高于并聯(lián)揩振頻率fd時,石英晶體呈容性。 僅在fsffd極窄的范圍內(nèi),石英晶體呈感性。 石英晶體振蕩器是高精度和高穩(wěn)定度的振蕩器,被廣泛應(yīng)用于彩電、計算機(jī)、 遙控器等各類振蕩電路中,以及通信系統(tǒng)中用于頻率發(fā)生器、為數(shù)據(jù)處理設(shè)備產(chǎn)生 時鐘信號和為

36、特定系統(tǒng)提供基準(zhǔn)信號。石英晶體正弦波振蕩電路的形式是多種多樣 的,但基本電路只有兩類,即并聯(lián)型和串聯(lián)型石英晶體正弦波振蕩電路,前者石英 晶體工作在接近于并聯(lián)諧振狀態(tài),而后者則工作在串聯(lián)諧振狀態(tài)。 在工程應(yīng)用中,例如在實驗用的低頻及高頻信號產(chǎn)生電路中,往往要求正弦波 振蕩電路的振蕩頻率有一定的穩(wěn)定度,有時要求振蕩頻率十分穩(wěn)定,如通訊系統(tǒng)中 的射頻振蕩電路、數(shù)字系統(tǒng)的時鐘產(chǎn)生電路等。因此,有必要引用頻率穩(wěn)定度來作 為衡量振蕩電路的質(zhì)量指標(biāo)之一。頻率穩(wěn)定度一般用頻率的相對變化量f/f 0來表 示,f 0為振蕩頻率,f 為頻率偏移。頻率穩(wěn)定度有時附加時間條件, 如一小時或 一日內(nèi)的頻率相對變化量。 影

37、響 LC振蕩電路振蕩頻率無的因素主要是 LC 并聯(lián)諧振回路的 Q值,可以證 明,Q 值愈大,頻率穩(wěn)定度愈高。由電路理論知道:為了提高 Q值,應(yīng)盡量減小回 路的損耗電阻 R并加大 L/C值。 但一般的 LC振蕩電路,其 Q值只可達(dá)數(shù)百, 在 要求頻率穩(wěn)定度高的場合,往往采用石英晶體振蕩電路。它的頻率穩(wěn)定度可高達(dá) 10-9甚至 10-11。 石英晶體振蕩電路之所以具有極高的頻率穩(wěn)定度,主要是由于采用了具有極高 Q值的石英晶體元件。石英晶體是一種各向異性的結(jié)晶體,它是硅石的一種,其化 學(xué)成分是二氧化硅 。 從一塊晶體上按一定的方位角切下的薄片稱為晶片(可以是 正方形、矩形或圓形等), 然后在晶片的兩

38、個對應(yīng)表面上涂敷銀層并裝上一對金屬 板,就構(gòu)成石英晶體產(chǎn)品,一般用金屬外殼密封,也有用玻璃殼封裝的。 曼徹斯特碼編解碼電路設(shè)計 第三章 曼徹斯特編解碼方案 13 圖 3.3 石英晶體產(chǎn)品外形 石英晶片所以能做振蕩電路是基于它的壓電效應(yīng),可以用上圖所示的等效電路 來模擬。等效電路中的 C。 為切片與金屬板構(gòu)成的靜電電容,L 和 C分別模擬晶體 的質(zhì)量(代表慣性)和彈性,而晶片振動時,因摩擦而造成的損耗則用電阻 R來等效。 石英晶體的一個可貴的特點在于它具有很高的質(zhì)量與彈性的比值 (等效于 L/C), 因而它的品質(zhì)因數(shù) Q高達(dá) 10000500000的范圍內(nèi)。 等效電路中元件的典型參數(shù)為: Co很

39、小:幾 pF幾十 pF,L:幾十 mH幾百 mH,C:0.0002 pF 0.1pF 。 下圖為石英晶體的符號、等效電路和電抗特性。 圖 3.4 石英晶體的符號、等效電路和電抗特性 由等效電路可知,石英晶體有兩個諧振頻率,即 (1)L-C-R 支路串聯(lián)諧振 (3.1)12sfLC (2)當(dāng) ffs時,L-C-R 支路呈感性,與 Co產(chǎn)生并聯(lián)諧振。 曼徹斯特碼編解碼電路設(shè)計 第三章 曼徹斯特編解碼方案 14 (3.2)12OOp sCCf fL 由于 CoC,故 fPf S. 在實際應(yīng)用中,通常串入一個用于校正振蕩頻率的小電容 CS,如上圖所示。 CS的選擇應(yīng)比 C大。 因此,利用石英晶體的頻率

40、特性可構(gòu)成兩種不同類型的頻率高度穩(wěn)定的正弦波 振蕩電路: 當(dāng)石英晶體發(fā)生串聯(lián)諧振時,它呈純阻性,相移是 0。若把石英晶體作為放大 電路的反饋網(wǎng)絡(luò),并起選頻作用,只要放大電路的相移也是 0,則滿足相位條件, 形成串聯(lián)型石英晶體正弦波振蕩電路。 當(dāng)頻率在 fs與 fp之間,石英晶體呈感性,可將它與兩個 C構(gòu)成電容三點式正 弦波振蕩電路,形成并聯(lián)型石英晶體正弦波振蕩電路如圖 3.5所示。 綜合以上因素本次設(shè)計時鐘源選用并聯(lián)型石英晶體正弦波振蕩電路如圖 3.5所 示電路完全可以滿足系統(tǒng)在頻率穩(wěn)定度以及精確度等各項要求。 乘乘 8 7 2 U?A UA9637A CLK3 D2 SD 4 CD 1 Q

41、5 Q 6 U?A 74LS74 CLK3 D2 SD 4 CD 1 Q 5 Q 6 U?A 74LS74 I0A6 I1A5 12A4 13A3 EA1 ZA 7 I0B10 I1B11 I2B12 I2C13 EB15 ZB 9 S014 S12 74LS153 C2 C1 C3 1000PF 20PF 5PF 乘 乘 乘 乘 +5V 乘 乘 乘 乘 乘 乘 乘 乘 乘 乘 乘 乘 IC1 IC2 IC3 乘 乘 乘 乘 乘 IC4 乘 乘 乘 乘 +5V 圖 3.5 并聯(lián)型石英晶體正弦波振蕩電路 3.1.2 占空比調(diào)整電路 占空比調(diào)整電路采用一個 D觸發(fā)器,將其反向輸出端接至其輸入端 D

42、 管腳,時 鐘源輸出端接入其 CP管腳,從而構(gòu)成一個二分頻電路實現(xiàn)占空比調(diào)整,將原來由 石英晶體震蕩電路產(chǎn)生的占空比隨頻率變化而變化的時鐘信號調(diào)整其占空比為 50%。如下圖所示: 曼徹斯特碼編解碼電路設(shè)計 第三章 曼徹斯特編解碼方案 15 乘乘 8 7 2 U?A UA9637A CLK3 D2 SD 4 CD 1 Q 5 Q 6 U?A 74LS74 CLK3 D2 SD 4 CD 1 Q 5 Q 6 U?A 74LS74 I0A6 I1A5 12A4 13A3 EA1 ZA 7 I0B10 I1B11 I2B12 I2C13 EB15 ZB 9 S014 S12 74LS153 C2 C1

43、 C3 1000PF 20PF 5PF 乘 乘 乘 乘 +5V 乘 乘 乘 乘 乘 乘 乘 乘 乘 乘 乘 乘 IC1 IC2 IC3 乘 乘 乘 乘 乘 IC4 乘 乘 乘 乘 +5V 圖 3.6 占空比調(diào)整電路 3.1.3 編碼電路 曼徹斯特碼在時鐘的前半周期和原碼相同,后半周期和原碼相反。因此要用一 個數(shù)據(jù)選擇器,在時鐘信號為高電平時,選擇原碼作為曼徹斯特編碼的信號,而時 鐘信號為低電平時,選擇原碼的反碼作為曼徹斯特編碼信號即可。如下圖所示: 乘乘 8 7 2 U?A UA9637A CLK3 D2 SD 4 CD 1 Q 5 Q 6 U?A 74LS74 CLK3 D2 SD 4 CD

44、 1 Q 5 Q 6 U?A 74LS74 I0A6 I1A5 12A4 13A3 EA1 ZA 7 I0B10 I1B11 I2B12 I2C13 EB15 ZB 9 S014 S12 74LS153 C2 C1 C3 1000PF 20PF 5PF 乘 乘 乘 乘 +5V 乘 乘 乘 乘 乘 乘 乘 乘 乘 乘 乘 乘 IC1 IC2 IC3 乘 乘 乘 乘 乘 IC4 乘 乘 乘 乘 +5V 圖 3.7 編碼電路 以上則構(gòu)成了曼徹斯特編碼電路模塊。 3.2 解碼電路 解碼電路中,由于同步時鐘信號已經(jīng)有專門的模塊電路恢復(fù)出來,因此直接利 用,解碼電路模塊所需要做的只是在時鐘信號為高電平(前

45、半時鐘周期)時,直接 曼徹斯特碼編解碼電路設(shè)計 第三章 曼徹斯特編解碼方案 16 把此時曼徹斯特碼電平值作為曼徹斯特碼譯碼的信號,而時鐘信號為低電平(后半 時鐘周期)時,保持前半時鐘周期的曼徹斯特碼電平值即可。因此解碼電路中,理 論上只需要一個D觸發(fā)器即可以實現(xiàn)。解碼電路比較簡單。 3.3 同步信號提取電路 數(shù)字通信在近幾十年來得到了迅速的發(fā)展,其原因是數(shù)字通信系統(tǒng)具有許多模 擬通信系統(tǒng)不能達(dá)到或不容易達(dá)到的優(yōu)越性。數(shù)字通信的這些優(yōu)越性體現(xiàn)在諸多方 面,以下是一些容易理解的數(shù)字通信的優(yōu)點。 1. 抗干擾能力強(qiáng); 2. 便于靈活進(jìn)行各種處理,可以硬件實現(xiàn),也可以計算機(jī)程序?qū)崿F(xiàn); 3. 易于實現(xiàn)集

46、成化、小型化; 4. 易于加密; 5. 容易存儲; 6. 各種業(yè)務(wù)可以結(jié)合起來,有利于實現(xiàn)寬帶多媒體通信。 數(shù)字通信系統(tǒng)雖然優(yōu)點眾多,但是仍然有其固有的缺點,主要體現(xiàn)在同步和誤 碼上面。這些方面的指標(biāo)是通信系統(tǒng)性能的關(guān)鍵,但同時,這方面的理論和技術(shù)也 是通信領(lǐng)域研究的重點和難點。數(shù)字通信系統(tǒng)中,有異步通信系統(tǒng)和同步通信系統(tǒng)。 在同步通信系統(tǒng)中,數(shù)字信號序列是按節(jié)拍一步一步工作,因此收發(fā)兩端的節(jié)拍一 定要相同。否則將出現(xiàn)混亂。另外,發(fā)送的數(shù)字信號序列常常是編組的,收端必須 知道這些編組的頭尾,否則無法恢復(fù)原始信息。要保證收發(fā)兩端的節(jié)拍一致,必須 有同步系統(tǒng)的控制同步是數(shù)字通信系統(tǒng)以及某些采用相干

47、解調(diào)的模擬通信系統(tǒng)中的 一個重要問題。由于收發(fā)雙方不在一地,要使它們能步調(diào)一致協(xié)調(diào)工作,必須要有 同步系統(tǒng)來保證。在數(shù)字通信中,按照同步的功用分為:載波同步、位同步、群同 步和網(wǎng)同步。 在數(shù)字通信中,任何消息都是一連串信號碼元序列,所以接收時需要知道每個 碼元的起止時刻,才能在恰當(dāng)?shù)臅r刻進(jìn)行取樣判決。通常將在接收端產(chǎn)生與接收碼 元的重復(fù)頻率和相位一致的定時脈沖序列的過程稱為碼元同步或位同步,而稱這個 定時脈沖序列為碼元同步脈沖或位同步脈沖。必須獲得了同步時鐘信號才能實現(xiàn)解 碼。位同步是指在接收端的基帶信號中提取碼元定時的過程,是正確取樣判決的基 礎(chǔ),只有數(shù)字通信才需要,并且不論是基帶傳輸還是頻

48、帶傳輸都需要位同步;所提 取的位同步信息是頻率等于碼速率的定時脈沖,相位則根據(jù)判決時信號波形決定, 可能在碼元中間,也可能在碼元中止時刻或其他時刻。位同步又稱同步傳輸,它是 使接收端對每一位數(shù)據(jù)都要和發(fā)送端保持同步。如果基帶信號為隨機(jī)的二進(jìn)制不歸 零脈沖序列,那么這種信號本身不包含位同步信號。為了獲得位同步信號,就應(yīng)在 曼徹斯特碼編解碼電路設(shè)計 第三章 曼徹斯特編解碼方案 17 基帶信號中插入位同步導(dǎo)頻信號,或者對該基帶信號進(jìn)行某種變換。這兩種方法稱 為插入導(dǎo)頻法和直接法。還有一種方式,將基帶信號通過線路編碼的方式,使其包 含定時信號。 在實現(xiàn)位同步時,具體實現(xiàn)可分為外同步法和自同步法兩種。在

49、外同步法中, 接收端的同步信號事先由發(fā)送端送來,而不是自己產(chǎn)生也不是從信號中提取出來。 即在發(fā)送數(shù)據(jù)之前,發(fā)送端先向接收端發(fā)出一串同步時鐘脈沖,接收端按照這一時 鐘脈沖頻率和時序鎖定接收端的接收頻率,以便在接收數(shù)據(jù)的過程中始終與發(fā)送端 保持同步。 自同步法是指能從數(shù)據(jù)信號波形中提取同步信號的方法。自同步法也就是通 過編碼(線路編碼)令數(shù)據(jù)信號波形的功率譜中包含表達(dá)定時分量的線譜的方式 達(dá)到的。曼徹斯特碼是一種典型使用自同步法保持位同步的線路碼型。 同步信號提取電路是整個電路中最關(guān)鍵也是最復(fù)雜的部分,它的成功與否直接 影響整個電路的正常工作,任何一點同步信號提取電路的誤差都可能導(dǎo)致最終的解 碼輸

50、出誤碼。 同步時鐘提取電路具體分為以下幾個部分: 整形電路 微分電路 全波整流電路 窄帶濾波電路 鎖相環(huán)電路及二分頻 結(jié)構(gòu)圖如下所示: 曼碼輸入 同步信號輸出 整形 微分 全波整 流 窄帶濾 波 鎖相環(huán) 及分頻 頻 圖 3.8 同步時鐘提取電路原理圖 曼徹斯特碼編解碼電路設(shè)計 第三章 曼徹斯特編解碼方案 18 微分后波形 全波整流后波形 窄帶濾波后波形 圖 3.9 同步時鐘提取波形圖 3.3.1 利用電壓比較器整形曼碼 接受端所接收到的曼徹斯特碼在傳輸過程中不可避免的會受到外界的干擾從而 產(chǎn)生信號波形的失真,接收到的波形將不再是規(guī)則的方波,因此在進(jìn)行解碼之前必 須對接收的信號先進(jìn)行整形,利用過

51、零比較器可以實現(xiàn)這一要求。 電壓比較器是集成運放非線性應(yīng)用電路,它將一個模擬量電壓信號和一個參考 電壓相比較,在二者幅度相等的附近,輸出電壓將產(chǎn)生躍變,相應(yīng)輸出高電平或低 電平。比較器可以組成非正弦波形變換電路及應(yīng)用于模擬與數(shù)字信號轉(zhuǎn)換等領(lǐng)域。 下圖所示為一最簡單的電壓比較器,U R為參考電壓,加在運放的同相輸入端, 輸入電壓 ui加在反相輸入端。 (a)電路圖 (b)傳輸特性 曼徹斯特碼 曼徹斯特碼編解碼電路設(shè)計 第三章 曼徹斯特編解碼方案 19 圖 3.10 電壓比較器 當(dāng) uiU R時,運放輸出高電平,穩(wěn)壓管 Dz反向穩(wěn)壓工作。輸出端電位被其箝 位在穩(wěn)壓管的穩(wěn)定電壓 UZ,即 uOU Z

52、 當(dāng) uiU R時,運放輸出低電平,D Z正向?qū)?,輸出電壓等于穩(wěn)壓管的正向壓降 UD,即 uoU D 因此,以 UR為界,當(dāng)輸入電壓 ui變化時,輸出端反映出兩種狀態(tài),高電位和 低電位。表示輸出電壓與輸入電壓之間關(guān)系的特性曲線,稱為傳輸特性。 圖 3.10 為(a)圖比較器的傳輸特性。 常用的電壓比較器有過零比較器、具有滯回特性的過零比較器、雙限比較器 (又稱窗口比較器)等。 過零比較器 電路如下圖所示為加限幅電路的過零比較器,D Z為限幅穩(wěn)壓管。信號從運放的 反相輸入端輸入,參考電壓為零,從同相端輸入。當(dāng) Ui0 時,輸出 UO-(U Z+UD), 當(dāng) Ui0 時,U O+(U Z+UD)

53、。其電壓傳輸特性如圖 3.11(b)所示。 過零比較器結(jié)構(gòu)簡單,靈敏度高,但抗干擾能力差。 (a) 過零比較器 (b) 電壓傳輸特性 圖 3.11 過零比較器 3.3.2 利用微分電路檢出曼碼跳變沿 微分電路可把矩形波轉(zhuǎn)換為尖脈沖波,此電路的輸出波形只反映輸入波形的突 變部分,即只有輸入波形發(fā)生突變的瞬間才有輸出。而對恒定部分則沒有輸出。輸 出的尖脈沖波形的寬度與 R*C有關(guān)(即電路的時間常數(shù)),R*C 越小,尖脈沖波形越 尖,反之則寬。此電路的 R*C必須遠(yuǎn)遠(yuǎn)少于輸入波形的寬度,否則就失去了波形變換 的作用,變?yōu)橐话愕?RC耦合電路了,一般 R*C少于或等于輸入波形寬度的 1/10就可 以了

54、。因此,利用微分電路可以檢出曼徹斯特碼跳變沿,從而方便下一步從中提取 時鐘信號。 曼徹斯特碼編解碼電路設(shè)計 第三章 曼徹斯特編解碼方案 20 圖 3.12給出了一個標(biāo)準(zhǔn)的微分電路形式。為表達(dá)方便,這里我們使輸入為頻 率為 50Hz的方波,經(jīng)過微分電路后,輸出為變化很陡峭的曲線。圖 3.13是用示波 器顯示的輸入和輸出的波形。 圖 3.12 微分電路波形圖 圖 3.13 示波器波形 當(dāng)?shù)谝粋€方波電壓加在微分電路的兩端(輸入端)時,電容 C上的電壓開始 因充電而增加。而流過電容 C的電流則隨著充電電壓的上升而下降。電流經(jīng)過微分 電路(R、C)的規(guī)律可用下面的公式來表達(dá)(參考右 圖): tCRiVe

55、 i-充電電流(A); v-輸入信號電壓(V); R-電路電阻值(歐姆); 圖 3.14 微分電路 曼徹斯特碼編解碼電路設(shè)計 第三章 曼徹斯特編解碼方案 21 C-電路電容值(F); e-自然對數(shù)常數(shù)(2.71828); t-信號電壓作用時間(秒); CR-R、C 常數(shù)(R*C) 由此我們可以看出輸出部分即電阻上的電壓為 i*R,結(jié)合上面的計算,我們可 以得出輸出電壓曲線計算公式為(其曲線見下圖): /tCRiVe 圖 3.15輸出電壓曲線圖 3.3.3 全波整流電路 在微分電路之后,由于檢測出來的曼徹斯特碼跳變沿具有上下兩個方向,得到 的尖鋒脈沖也同樣如此,不能直接濾波提取位同步信號,因此需

56、要一個全波整流電 路將微分電路輸出的尖鋒脈沖統(tǒng)一為一個極性,然后送入窄帶濾波電路即可提取出 位同步信號。全波整流電路有單相全波整流電路和橋式整流電路等幾種類型,下面 是對它們各自性能的分析。 全波整流電路 全波整流電路,可以看作是由兩個半波整流電路組合成的。變壓器次級線圈中間需 要引出一個抽頭,把次組線圈分成兩個對稱的繞組,從而引出大小相等但極性相反 曼徹斯特碼編解碼電路設(shè)計 第三章 曼徹斯特編解碼方案 22 的兩個電壓 e2a 、e2b ,構(gòu)成 e2a 、D1、Rfz 與 e2b 、D2 、Rfz ,兩個通電回路。 全波整流電路的工作原理:在 0 間內(nèi),e2a 對 Dl 為正向電壓,D1 導(dǎo)

57、通, 在 Rfz 上得到上正下負(fù)的電壓;e2b 對 D2 為反向電壓, D2 不導(dǎo)通。在 -2 時 間內(nèi),e2b 對 D2 為正向電壓,D2 導(dǎo)通,在 Rfz 上得到的仍然是上正下負(fù)的電壓; e2a 對 D1 為反向電壓,D1 不導(dǎo)通。如此反復(fù),由于兩個整流元件 D1 、D2 輪流 導(dǎo)電,結(jié)果負(fù)載電阻 Rfz 上在正、負(fù)兩個半周作用期間,都有同一方向的電流通過, 因此稱為全波整流,全波整流不僅利用了正半周,而且還巧妙地利用了負(fù)半周,從 而大大地提高了整流效率(Usc 0.9e2,比半波整流時大一倍) 全波整流電路的輸出電壓為: (3.3)22201sin0.9OLVVtdV 流過負(fù)載的平均電流

58、為 (3.4)220.9DLLVIR 二極管所承受的最大反向電壓 max2RV 單相全波整流電路的脈動系數(shù) S與單相橋式整流電路相同。 (3.5)2240.6733V 單相橋式整流電路的變壓器中只有交流電流流過,而全波整流電路中有直流 分量流過。所以單相橋式整流電路的變壓器效率較高,在同樣功率容量條件下,體 積可以小一些。單相橋式整流電路的總體性能優(yōu)于全波整流電路,故廣泛應(yīng)用于直 流電源之中。 單相橋式整流電路 曼徹斯特碼編解碼電路設(shè)計 第三章 曼徹斯特編解碼方案 23 (a) (b) 圖 3.16 單相橋式整流電路 單相橋式整流電單相橋式整流電路如圖 3.16(a)所示,圖中 Tr為電源變壓

59、器, 它的作用是將交流電網(wǎng)電壓 vI變成整流電路要求的交流電壓 ,R L是要求直流供電 的負(fù)載電阻,四只整流二極管 D1D 4接成電橋的形式,故有橋式整流電路之稱。 路的工作原理可分析如下。為簡單起見,二極管用理想模型來處理,即正向?qū)?通電阻為零,反向電阻為無窮大。 在 v2的正半周,電流從變壓器副邊線圈的上端流出,只能經(jīng)過二極管 D1流向 RL,再由二極管 D3流回變壓器,所以 D1、D 3正向?qū)?,D 2、D 4反偏截止。在負(fù)載上 產(chǎn)生一個極性為上正下負(fù)的輸出電壓。其電流通路可用圖 3.16(a)中實線箭頭表 示。 在 v2的負(fù)半周,其極性與圖示相反,電流從變壓器副邊線圈的下端流出,只能

60、經(jīng)過二極管 D2流向 RL,再由二極管 D4流回變壓器,所以 D1、D 3反偏截止,D 2、D 4 正向?qū)?。電流流過 RL時產(chǎn)生的電壓極性仍是上正下負(fù),與正半周時相同。其電流 通路如圖 3.16(a)中虛線箭頭所示。 綜上所述,橋式整流電路巧妙地利用了二極管的單向?qū)щ娦?,將四個二極管分 為兩組,根據(jù)變壓器副邊電壓的極性分別導(dǎo)通,將變壓器副邊電壓的正極性端與負(fù) 載電阻的上端相連,負(fù)極性端與負(fù)載電阻的下端相連,使負(fù)載上始終可以得到一個 單方向的脈動電壓。 根據(jù)上述分析,可得橋式整流電路的工作波形如圖 3.17。由圖可見,通過負(fù)載 RL的電流 iL以及電壓 vL的波形都是單方向的全波脈動波形。 曼

61、徹斯特碼編解碼電路設(shè)計 第三章 曼徹斯特編解碼方案 24 橋式整流電路的優(yōu)點是輸出電壓高,紋波電壓較小,管子所承受的最大反向電 壓較低,同時因電源變壓器在正、負(fù)半周內(nèi)都有電流供給負(fù)載,電源變壓器得到了 充分的利用,效率較高。因此,這種電路在半導(dǎo)體整流電路中得到了頗為廣泛的應(yīng) 用。電路的缺點是二極管用得較多,但目前市場上已有整流橋堆出售,如 QL51AG、QL62AL 等,其中 QL62AL 的額定電流為 2A,最大反向電壓為 25V1000V。故單相橋式整流電路常畫成圖 3.16(b)所示的簡化形式。 在綜合對比了橋式整流電路和全波整流電路的各自性能后,顯然橋式整流電路 唯一缺點就是二極管用得

62、較多,但電路效率較高,因此在同步信號提取模塊中采用 了橋式整流電路進(jìn)行全波整流,統(tǒng)一尖鋒脈沖的極性,為下一步濾波做好準(zhǔn)備。 圖 3.17 橋式整流電路的工作波形圖 3.3.4 窄帶濾波電路 為了從尖鋒脈沖中提取同步時鐘信號,需要一個帶寬非常窄的濾波電路進(jìn)行濾 波,顯然一般的帶通濾波器并不能滿足要求。 在無線電測量儀器、通訊設(shè)備、遙控遙測及其他無線電設(shè)備中,常常需要通帶 非常窄的帶通濾波器,它對于提高這些無線電測量儀器和設(shè)備的性能起著極為重要 的作用。這些濾波器要求其頻率從數(shù)千赫到數(shù)十千兆赫,相對帶寬小到目前為止 0.1%-0.01%,有的要求寬帶為幾十赫,甚至 1赫。能完成上述要求的窄帶濾波器

63、, 有:機(jī)械濾波器(包括音叉濾波器、音片濾波器、棒狀或圓片狀濾波器),陶瓷濾 波器和晶體濾波器。概況地說,音片、音叉濾波器適用于 20KHZ以下;圓片、棒狀 曼徹斯特碼編解碼電路設(shè)計 第三章 曼徹斯特編解碼方案 25 濾波器適用于 600KHZ以下;陶瓷濾波器、晶體濾波器適用以上所有的頻率,但晶 體濾波器的 Q值遠(yuǎn)較陶瓷濾波器高,能實現(xiàn)更窄的帶寬。 眾所周知,一塊單晶體諧振器具有等效電感 、等效電容 、等效損耗電阻mLmC 、和結(jié)構(gòu)電容 。 如果省掉 ,可以視為理想的三元件二端網(wǎng)路,那么它有一mroCmr 個串聯(lián)諧振頻率 和一個并聯(lián)諧振頻率的 。將一塊諧振器串聯(lián)在兩級放大器之間,f rf 利用

64、它的串聯(lián)諧振特性,獲得一個通帶很窄的選擇放大器、其中心 而定,通帶寬of 度決定于諧振器的 Q值。這種串聯(lián)晶體的選擇放大器叫做有源晶體濾波器,然而它 的阻帶衰減特性差。這種選擇放大器特性差的主要原因是由于諧振器的結(jié)構(gòu)電容 所致,因為阻帶頻率信號可以通過 由第一級放大器直接藕合到第二級、頻率oCoC 較高時更為重要。為了克服這一缺點,則希望設(shè)置另一通路,以獲得與此衰減較大 的衰減特性。這就是有源晶體濾波器,其典型線路如圖所示。 1 2 3 4 BRIDGE1R31K 8 7 2 U?A UA9637A 5.1K R1 10K 1 16 A R9 510 乘 乘 R?A 乘 乘 乘 乘 乘 乘 1

65、 16 R?A1K 乘 乘 乘 乘 乘 乘 乘 乘 乘 乘 乘 乘 乘 乘乘 乘 C2 IC1 IC5 C3 IC6 IC7 C4 0.01uF IC8 IC9 C510PF VCC C1 1PF 1 16 R6A20k Dz ZENER1 乘乘乘 Text R14 乘 乘 乘 乘 R12 10K NPN 乘 乘 乘 乘 乘乘VCO 1K CLR R2 CLR NPN 2CW231 CLK 3 D 2SD 4 CD 1 Q5 Q6 A 74LS74 +5V R102.3K 乘 乘 乘 乘 R11 20K +5V CLK 3 D 2SD 4 CD 1 Q5 Q6 A 74LS74 乘 乘 乘 乘

66、 R13 5.1K 8 7 2 A UA9637A R420K Dz R8 270 R550 2CW231 R7 R6510 圖 3.18 有源晶體濾波電路 有源晶體濾波器因消除了 對阻帶特性的影響,而獲得了好的濾波特性。如果o 對于衰減特性要求更好的濾波器,使用兩節(jié)單晶體濾波電路串接,其特性比一節(jié)雙 晶體濾波電路的濾波器要好。圖中 C常采用可變電容器,其值在 X2晶體諧振器 值附近,在電路調(diào)試中進(jìn)行調(diào)整。o 晶體諧振器的數(shù)量和參數(shù)的計算,主要取決于有源濾波器的頻率衰減特性。在 串有晶體的選擇放大器中,晶體諧振器的有效 值為。 曼徹斯特碼編解碼電路設(shè)計 第三章 曼徹斯特編解碼方案 26 00mSPLR 其中: 02fppf 為晶體諧振器的等效電感mL 為濾波器的 3dB帶寬Pf 為晶體諧振器中的等效電阻SR 是晶體諧振器的等效串聯(lián)電阻 與外電路總電阻串聯(lián)的總電阻。而外電路總S mr 電阻又是第一級放大器的輸出阻抗、第二級放大器的輸入阻抗之和,如果晶體中還 串有調(diào)節(jié)帶寬的電阻,則該總電阻還應(yīng)加上串聯(lián)電阻值。在設(shè)計濾波器時,我們可 以根據(jù)要求的阻帶特性來確定晶體的數(shù)量 n。當(dāng)晶體的數(shù)量確定

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!