《2019-2020年高考數(shù)學(xué)二輪復(fù)習(xí) 專題6 解析幾何 第3講 直線與圓錐曲線的位置關(guān)系 文.doc》由會員分享,可在線閱讀,更多相關(guān)《2019-2020年高考數(shù)學(xué)二輪復(fù)習(xí) 專題6 解析幾何 第3講 直線與圓錐曲線的位置關(guān)系 文.doc(8頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年高考數(shù)學(xué)二輪復(fù)習(xí) 專題6 解析幾何 第3講 直線與圓錐曲線的位置關(guān)系 文
直線與圓錐曲線的位置關(guān)系
訓(xùn)練提示: 用直線方程和圓錐曲線方程組成的方程組解的個數(shù),可以研究直線與圓錐曲線的位置關(guān)系,方程組消元后要注意所得方程的二次項系數(shù)是否含有參數(shù),若含參數(shù),需按二次項系數(shù)是否為零進(jìn)行分類討論,只有二次項系數(shù)不為零時,方程才是一元二次方程,才可以用判別式Δ的符號判斷方程解的個數(shù),從而說明直線與圓錐曲線的位置關(guān)系.
1.在平面直角坐標(biāo)系xOy中,已知橢圓C1:+=1(a>b>0)的左焦點為F1(-1,0),且點P(0,1)在C1上.
(1)求橢圓C1的方程;
(2)設(shè)直線l同時與橢圓C1和拋物線C2:y2=4x相切,求直線l的方程.
解:(1)因為橢圓C1的左焦點為F1(-1,0),所以c=1,
將點P(0,1)代入橢圓方程+=1,得=1,
即b2=1,所以a2=b2+c2=2,
所以橢圓C1的方程為+y2=1.
(2)直線l的斜率顯然存在,設(shè)直線l的方程為y=kx+m,
由消去y并整理得,
(1+2k2)x2+4kmx+2m2-2=0,
因為直線l與橢圓C1相切,
所以Δ1=16k2m2-4(1+2k2)(2m2-2)=0,
整理得2k2-m2+1=0,①
由消去y并整理得,
k2x2+(2km-4)x+m2=0,
因為直線l與拋物線C2相切,
所以Δ2=(2km-4)2-4k2m2=0,
整理得km=1,②
綜合①②,解得或
所以直線l的方程為y=x+或y=-x-.
2.若雙曲線E:-y2=1(a>0)的離心率等于,直線y=kx-1與雙曲線E的右支交于A,B兩點.
(1)求k的取值范圍;
(2)若|AB|=6,點C是雙曲線上一點,且=m(+),求k,m的值.
解:(1)由得
故雙曲線E的方程為x2-y2=1.
設(shè)A(x1,y1),B(x2,y2),
由得(1-k2)x2+2kx-2=0.(*)
因為直線與雙曲線右支交于A,B兩點,
故
即
所以k的取值范圍為(1,).
(2)由(*)得x1+x2=,x1x2=,
所以|AB|=
=2=6,
整理得28k4-55k2+25=0,
所以k2=或k2=.
又1
b>0)的中心為O,它的一個頂點為(0,1),離心率為,過其右焦點的直線交該橢圓于A,B兩點.
(1)求這個橢圓的方程;
(2)若=0,求△OAB的面積.
解:(1)因為=,所以c2=a2,
依題意b=1,所以a2-c2=1,所以a2-a2=1,
所以a2=2,所以橢圓的方程為+=1.
(2)橢圓的右焦點為(1,0),當(dāng)直線AB與x軸垂直時,A,B的坐標(biāo)為(1,),(1,-),此時=≠0,
所以直線AB與x軸不垂直.
設(shè)直線AB的斜率為k,則直線AB的方程為y=k(x-1),與+=1,聯(lián)立得(2k2+1)x2-4k2x+2k2-2=0,
設(shè)A(x1,y1),B(x2,y2),線段AB的中點為M(x0,y0),
所以x1+x2=,x1x2=,
M(,),
因為=0,
即(x1,y1)(x2,y2)=0,
所以x1x2+y1y2=x1x2+k(x1-1)k(x2-1)
=(k2+1)x1x2-k2(x1+x2)+k2
=0,
即-+k2=0,
所以k2=2,所以k=,
所以|AB|2=4|OM|2=4[()2+()2]=,
所以|AB|=.
Rt△OAB斜邊高為點O到直線AB的距離
d==,
所以△OAB的面積為d|AB|==.
4.(xx昆明模擬)設(shè)拋物線C:y2=2px(p>0)的焦點為F,準(zhǔn)線為l,M∈C,以M為圓心的圓M與l相切于點Q,Q的縱坐標(biāo)為p,E(5,0)是圓M與x軸的不同于F的一個交點.
(1)求拋物線C與圓M的方程;
(2)過F且斜率為的直線n與C交于A,B兩點,求△ABQ的面積.
解:(1)由拋物線的定義知,圓M經(jīng)過焦點F(,0),
Q(-,p),點M的縱坐標(biāo)為p,
又M∈C,則M(,p),|MF|=2p.
由題意,M是線段EF的垂直平分線上的點,
所以=,解得p=2,
故拋物線C:y2=4x,圓M:(x-3)2+(y-2)2=16.
(2)由題意知直線n的方程為y=(x-1),
由解得或
設(shè)A(4,4),B(,-1),則|AB|=.
點Q(-1,2)到直線n:4x-3y-4=0的距離d=,
所以△ABQ的面積S=|AB|d=.
圓錐曲線的軌跡問題
訓(xùn)練提示:求動點的軌跡方程的關(guān)鍵:根據(jù)題目條件選擇合適的方法,尋找關(guān)于動點,橫縱坐標(biāo)所滿足的關(guān)系式.
5.(xx甘肅蘭州第二次監(jiān)測)已知點P為y軸上的動點,點M為x軸上的動點,點F(1,0)為定點,且滿足+=0,=0.
(1)求動點N的軌跡E的方程;
(2)過點F且斜率為k的直線l與曲線E交于兩點A,B,試判斷在x軸上是否存在點C,使得|CA|2+|CB|2=|AB|2成立,請說明理由.
解:(1)設(shè)N(x,y),則由+=0,
得P為MN的中點.所以P(0,),M(-x,0).
所以=(-x,-),=(1,-).
所以=-x+=0,即y2=4x.
所以動點N的軌跡E的方程y2=4x.
(2)設(shè)直線l的方程為y=k(x-1),
由消去x得y2-y-4=0.
設(shè)A(x1,y1),B(x2,y2),則y1+y2=,y1y2=-4.
假設(shè)存在點C(m,0)滿足條件,
則=(x1-m,y1),=(x2-m,y2),
所以
=x1x2-m(x1+x2)+m2+y1y2
=()2-m()+m2-4
=-[(y1+y2)2-2y1y2]+m2-3
=m2-m(+2)-3.
顯然關(guān)于m的方程m2-m(+2)-3=0有解.
即在x軸上存在點C,使得|CA|2+|CB|2=|AB|2成立.
【教師備用】 已知平面上的動點R(x,y)及兩定點A(-2,0),B(2,0),直線RA,RB的斜率分別為k1,k2且k1k2=-,設(shè)動點R的軌跡為曲線C.
(1)求曲線C的方程;
(2)過點S(4,0)的直線與曲線C交于M,N兩點,過點M作MQ⊥x軸,交曲線C于點Q.求證:直線NQ過定點,并求出定點坐標(biāo).
解:(1)由題知x≠2,
且k1=,k2=,
則=-,
整理得,曲線C的方程為+=1(y≠0).
(2)設(shè)NQ與x軸交于D(t,0),
則直線NQ的方程為x=my+t(m≠0),
記N(x1,y1),Q(x2,y2),由對稱性知M(x2,-y2),
由消x得,(3m2+4)y2+6mty+3t2-12=0,
所以Δ=48(3m2+4-t2)>0,
故
由M、N、S三點共線知kNS=kMS,即=,
所以y1(my2+t-4)+y2(my1+t-4)=0,
整理得2my1y2+(t-4)(y1+y2)=0,
所以=0,即24m(t-1)=0,t=1,
所以直線NQ過定點D(1,0).
類型一:直線與圓錐曲線的位置關(guān)系
1.如圖,F1(-c,0),F2(c,0)分別是橢圓C:+=1(a>b>0)的左、右焦點,過點F1作x軸的垂線交橢圓的上半部分于點P,過點F2作直線PF2的垂線交直線x=于點Q.
(1)若點Q的坐標(biāo)為(4,4),求橢圓C的方程;
(2)證明:直線PQ與橢圓C只有一個交點.
(1)解:將點P(-c,y1)(y1>0)代入+=1得y1=,
PF2⊥QF2?=-1,
即2b2=ac(4-c).①
又Q(4,4),所以=4,②
c2=a2-b2(a,b,c>0),③
由①②③得a=2,c=1,b=,
所以橢圓C的方程為+=1.
(2)證明:設(shè)Q(,y2).由(1)知P(-c,).
所以==-,
==.
所以PF2⊥QF2?-=-1?y2=2a,
所以kPQ==.
則直線PQ的方程可表示為
y-=(x+c),
即cx-ay+a2=0,
由
消去y可得a2x2+2ca2x+a4-a2b2=0.
因為a>0,
所以x2+2cx+a2-b2=0,
即x2+2cx+c2=0,
此時Δ=(2c)2-4c2=0.
故直線PQ與橢圓C只有一個交點.
2.設(shè)F1,F2分別是橢圓C:+=1(a>b>0)的左、右焦點.
(1)設(shè)橢圓C上的點(,)到F1,F2兩點距離之和等于2,寫出橢圓C的方程;
(2)設(shè)過(1)中所得橢圓上的焦點F2且斜率為1的直線與其相交于A,B,求△ABF1的面積;
(3)設(shè)點P是橢圓C上的任意一點,過原點的直線l與橢圓相交于M,N兩點,若直線PM,PN的斜率都存在,并記為kPM、kPN,試探究kPMkPN的值是否與點P及直線l有關(guān),并證明你的結(jié)論.
解:(1)由于點(,)在橢圓上,
所以
解得故橢圓C的方程為+y2=1.
(2)由(1)知橢圓C的左、右焦點分別為F1(-1,0),F2(1,0),|F1F2|=2,
所以過橢圓的焦點F2且斜率為1的直線方程為y=x-1,
將其代入+y2=1,整理得3x2-4x=0,
解得x1=0,x2=.
當(dāng)x1=0時,y1=-1,當(dāng)x2=時,y2=.
所以△ABF1的面積:
=+
=|F1F2||y1|+|F1F2||y2|
=21+2=.
(3)過原點的直線l與橢圓+y2=1相交的兩點M,N關(guān)于坐標(biāo)原點對稱,設(shè)M(x0,y0),N(-x0,-y0),P(x,y),M,N,P在橢圓上,應(yīng)滿足橢圓方程,
得+=1,+y2=1,
兩式相減得=-.
又因為kPM=,kPN=,
所以kPMkPN===-.
故kPMkPN的值與點P的位置無關(guān),同時與直線l無關(guān).
類型二:弦長、面積及與弦中點、弦端點相關(guān)的問題
3.平面直角坐標(biāo)系xOy中,過橢圓M:+=1(a>b>0)右焦點的直線x+y-=0交M于A,B兩點,P為AB的中點,且OP的斜率為.
(1)求M的方程;
(2)C,D為M上的兩點,若四邊形ACBD的對角線CD⊥AB,求四邊形ACBD面積的最大值.
解:(1)設(shè)A(x1,y1),B(x2,y2),P(x0,y0),
則+=1,+=1,=-1,
由此可得=-=1.
因為x1+x2=2x0,y1+y2=2y0,=,
所以a2=2b2.
又由題意知,M的右焦點為(,0),故a2-b2=3.
因此a2=6,b2=3.
所以M的方程為+=1.
(2)由解得或
因此|AB|=.
由題意可設(shè)直線CD的方程為y=x+n(-b>0)的焦距為2,A是E的右頂點,P,Q是E上關(guān)于原點對稱的兩點,且直線PA的斜率與直線QA的斜率之積為-.
(1)求E的方程;
(2)過E的右焦點作直線與E交于M,N兩點,直線MA,NA與直線x=3分別交于C,D兩點,設(shè)△ACD與△AMN的面積分別記為S1,S2,求2S1-S2的最小值.
解:(1)設(shè)P(x0,y0),Q(-x0,-y0),
則=(a2-),
kPAkQA===-,
依題意有=,
又c=1,所以解得a2=4,b2=3,
故E的方程為+=1.
(2)設(shè)直線MN的方程為x=my+1,
代入E的方程得(3m2+4)y2+6my-9=0,
設(shè)M(x1,y1),N(x2,y2),
則y1+y2=-,
y1y2=-,
直線MA的方程為y=(x-2),
把x=3代入得yC==,
同理yD=.
所以|CD|=|yC-yD|==3,
所以S1=|CD|=.
S2=|AF||y1-y2|=,
2S1-S2=3-,
令=t(t≥1),
則m2=t2-1,
所以2S1-S2=3t-,
記f(t)=3t-,
則f′(t)=3+>0,
所以f(t)在[1,+∞)上是單調(diào)遞增的,
所以f(t)的最小值為f(1)=.
即2S1-S2的最小值為.
類型三:圓錐曲線與向量的綜合
5.(xx山西模擬)已知橢圓C的中心在原點,焦點在x軸上,焦距為2,離心率
為.
(1)求橢圓C的方程;
(2)設(shè)直線l經(jīng)過點M(0,1),且與橢圓C交于A,B兩點,若=2,求直線l的
方程.
解:(1)設(shè)橢圓方程為+=1(a>b>0),
因為c=1,=,
所以a=2,b=,
所以橢圓方程為+=1.
(2)若直線l的斜率不存在,
則A(0,-),B(0,),
此時||=+1,||=-1,
顯然不滿足=2,故直線l的斜率存在.
設(shè)直線l的方程為y=kx+1,
聯(lián)立方程
得(3+4k2)x2+8kx-8=0,且Δ>0.
設(shè)A(x1,y1),B(x2,y2),由=2,得x1=-2x2,
又
所以
消去x2得()2=,
解得k2=,k=,
所以直線l的方程為y=x+1,
即x-2y+2=0或x+2y-2=0.
【教師備用】 (xx黑龍江高三模擬)已知A,B,C是橢圓M:+=1(a>b>0)上的三點,其中點A的坐標(biāo)為(2,0),BC過橢圓的中心,且=0,||=2||.
(1)求橢圓M的方程;
(2)過點(0,t)的直線l(斜率存在時)與橢圓M交于兩點P,Q,設(shè)D為橢圓M與y軸負(fù)半軸的交點,且||=||,求實數(shù)t的取值范圍.
解:(1)因為||=2||且BC過(0,0),
則||=||.
因為=0,
所以∠OCA=90,
又因為a=2,
所以C(,).
設(shè)橢圓M的方程為+=1,
將C點坐標(biāo)代入得+=1,解得c2=8,b2=4.
所以橢圓M的方程為+=1.
(2)由條件知D(0,-2),
當(dāng)k=0時,顯然-20可得,t2<4+12k2,①
設(shè)P(x1,y1),Q(x2,y2),
PQ中點H(x0,y0),
則x0==,y0=kx0+t=,
所以H(,).
由||=||,所以DH⊥PQ,即kDH=-.
所以=-,化簡得t=1+3k2,②
所以t>1,由①②得,1
下載提示(請認(rèn)真閱讀)
- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認(rèn)領(lǐng)!既往收益都?xì)w您。
文檔包含非法信息?點此舉報后獲取現(xiàn)金獎勵!
下載文檔到電腦,查找使用更方便
9.9
積分
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該PPT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
-
2019-2020年高考數(shù)學(xué)二輪復(fù)習(xí)
專題6
解析幾何
第3講
直線與圓錐曲線的位置關(guān)系
2019
2020
年高
數(shù)學(xué)
二輪
復(fù)習(xí)
專題
直線
圓錐曲線
位置
關(guān)系
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學(xué)習(xí)交流,未經(jīng)上傳用戶書面授權(quán),請勿作他用。
鏈接地址:http://m.appdesigncorp.com/p-2832815.html