2019-2020年高考數(shù)學(xué)滾動(dòng)檢測(cè)07解析幾何統(tǒng)計(jì)和概率的綜合同步單元雙基雙測(cè)A卷理.doc
《2019-2020年高考數(shù)學(xué)滾動(dòng)檢測(cè)07解析幾何統(tǒng)計(jì)和概率的綜合同步單元雙基雙測(cè)A卷理.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019-2020年高考數(shù)學(xué)滾動(dòng)檢測(cè)07解析幾何統(tǒng)計(jì)和概率的綜合同步單元雙基雙測(cè)A卷理.doc(17頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高考數(shù)學(xué)滾動(dòng)檢測(cè)07解析幾何統(tǒng)計(jì)和概率的綜合同步單元雙基雙測(cè)A卷理 一、選擇題(共12小題,每題5分,共60分) 1. 已知是虛數(shù)單位,則( ) A. B. C. D. 【答案】B 【解析】 試題分析:根據(jù)題意,有,故選B. 考點(diǎn):復(fù)數(shù)的運(yùn)算. 2. 設(shè),那么的值為( ) A. B. C. D.-1 【答案】B 【解析】 考點(diǎn):二項(xiàng)式定理的應(yīng)用. 3. 若雙曲線的漸近線方程為,則雙曲線離心率為( ) A. B. C. D. 【答案】C 【解析】 試題分析:由得,所以,,故應(yīng)選C. 考點(diǎn):雙曲線的幾何性質(zhì)及運(yùn)用. 4. 小孔家有爺爺、奶奶、姥爺、姥姥、爸爸、媽媽,包括他共7人,一天爸爸從果園里摘了7個(gè)大小不同的梨,給家里每人一個(gè).小孔拿了最小的一個(gè),爺爺、奶奶、姥爺、姥姥4位老人之一拿最大的一個(gè),則梨子的不同分法共有( ) A.96種 B.120種 C.480種 D.720種 【答案】C 【解析】 (1)元素相鄰的排列問題——“捆邦法”;(2)元素相間的排列問題——“插空法”;(3)元素有順序限制的排列問題——“除序法”;(4)帶有“含”與“不含”“至多”“至少”的排列組合問題——間接法. 5. 極差為12;乙成績(jī)的眾數(shù)為13,,分別表示甲乙兩名運(yùn)動(dòng)員這項(xiàng)測(cè)試成績(jī)的平均數(shù),,分別表示甲乙兩名運(yùn)動(dòng)員這項(xiàng)測(cè)試成績(jī)的標(biāo)準(zhǔn)差,則有 ( ) A. B. C. D. 【答案】B 【解析】 試題分析:由已知可得x=5,y=1,z=3,甲的成績(jī)是9,14,15,15,16,21; 乙的成績(jī)是8,13,13,15,19,22;所以=,=;=,=,故選B. 考點(diǎn):莖葉圖;眾數(shù)、中位數(shù)、平均數(shù). 6. 如圖圓內(nèi)切于扇形,,若在扇形內(nèi)任取一點(diǎn),則該點(diǎn)在圓內(nèi)的概率為( ) A. B. C. D. 【答案】C 【解析】 考點(diǎn):幾何概型. 【方法點(diǎn)睛】(1)當(dāng)試驗(yàn)的結(jié)果構(gòu)成的區(qū)域?yàn)殚L(zhǎng)度、面積、體積等時(shí),應(yīng)考慮使用幾何概型求解.(2)利用幾何概型求概率時(shí),關(guān)鍵是試驗(yàn)的全部結(jié)果構(gòu)成的區(qū)域和事件發(fā)生的區(qū)域的尋找,有時(shí)需要設(shè)出變量,在坐標(biāo)系中表示所需要的區(qū)域.(3)幾何概型有兩個(gè)特點(diǎn):一是無(wú)限性,二是等可能性.基本事件可以抽象為點(diǎn),盡管這些點(diǎn)是無(wú)限的,但它們所占據(jù)的區(qū)域都是有限的,因此可用“比例解法”求解幾何概型的概率. 7. 【xx廣東五校聯(lián)考】已知點(diǎn)在雙曲線: (, )上, , 分別為雙曲線的左、右頂點(diǎn),離心率為,若為等腰三角形,其頂角為,則( ) A. B. C. D. 【答案】D 8. 【xx湖南五市十校聯(lián)考】世界數(shù)學(xué)名題“問題”:任取一個(gè)自然數(shù),如果它是偶數(shù),我們就把它除以2,如果它是奇數(shù),我們就把它乘3再加上1.在這樣一個(gè)變換下,我們就得到了一個(gè)新的自然數(shù).如果反復(fù)使用這個(gè)變換,我們就會(huì)得到一串自然數(shù),猜想就是:反復(fù)進(jìn)行上述運(yùn)算后,最后結(jié)果為1.現(xiàn)根據(jù)此問題設(shè)計(jì)一個(gè)程序框圖如圖所示.執(zhí)行該程序框圖,輸入的,則輸出( ) A. 3 B. 5 C. 6 D. 7 【答案】C 【解析】根據(jù)循環(huán)得, 結(jié)束循環(huán),輸出6,選C. 9. 在區(qū)域:內(nèi)隨機(jī)取一個(gè)點(diǎn),則此點(diǎn)到點(diǎn)的距離大于2的概率是( ) A. B. C. D. 【答案】B 【解析】 考點(diǎn):1.幾何概型概率;2.圓與圓相交的位置關(guān)系;3.圓的方程 10. 【xx湖南兩市聯(lián)考】如圖,過拋物線的焦點(diǎn)的直線交拋物線于點(diǎn),交其準(zhǔn)線于點(diǎn),若點(diǎn)是的中點(diǎn),且,則線段的長(zhǎng)為( ) A. B. C. D. 【答案】C 【解析】如圖:過點(diǎn)A作交l于點(diǎn)D. 由拋物線定義知: 由點(diǎn)是的中點(diǎn),有: . 所以.解得. 拋物線 設(shè),則.所以. . . : .與拋物線聯(lián)立得: . . . 故選C. 11. 如果一個(gè)位十進(jìn)制數(shù)的數(shù)位上的數(shù)字滿足“小大小大小大”的順序,即滿足:,我們稱這種數(shù)為“波浪數(shù)”;從1,2,3,4,5組成的數(shù)字不重復(fù)的五位數(shù)中任取一個(gè)五位數(shù),這個(gè)數(shù)為“波浪數(shù)”的個(gè)數(shù)是( ) A.16 B.18 C.10 D.8 【答案】A 【解析】 考點(diǎn):排列組合 12. 從橢圓上一點(diǎn)向軸作垂線,垂足恰好為左焦點(diǎn),是橢圓與軸正半軸的交點(diǎn),是橢圓與軸正半軸的交點(diǎn),且(是坐標(biāo)原點(diǎn)),則該橢圓的離心率是( ) A. B. C. D. 【答案】C 【解析】 試題分析:由題意可知,可得. 依題意設(shè),代入橢圓方程可得,. 則, ,,.故C正確. 考點(diǎn):橢圓的簡(jiǎn)單幾何性質(zhì). 二.填空題(共4小題,每小題5分,共20分) 13. 【xx福建四校聯(lián)考】在的二項(xiàng)展開式中, 的項(xiàng)的系數(shù)是_______.(用數(shù)字作答) 【答案】70 14. 【xx湖北黃岡中學(xué)三?!扛呷嘲嘁粚W(xué)習(xí)小組的四位同學(xué)周五下午參加學(xué)校的課外活動(dòng),在課外活動(dòng)中,有一人在打籃球,有一人在畫畫,有一人在跳舞,另外一人在散步,①不在散步,也不在打籃球;②不在跳舞,也不在散步;③“ 在散步”是“在跳舞”的充分條件;④不在打籃球,也不在散步;⑤不在跳舞,也不在打籃球.以上命題都是真命題,那么在_________. 【答案】畫畫 【解析】以上命題都是真命題, ∴對(duì)應(yīng)的情況是: 則由表格知A在跳舞,B在打籃球, ∵③“C在散步”是“A在跳舞”的充分條件, ∴C在散步, 則D在畫畫, 故答案為:畫畫。 15. 甲、乙等五人排成一排,甲不排兩端,且乙與甲不相鄰,符合條件的不同排法有 種.(用數(shù)字做答) 【答案】 【解析】 試題分析:第一步,先排除甲乙之外的三人,有種不同的排法;第二步,甲不排兩端,有種不同的排法;第三步,乙與甲不相鄰,有種不同的排法.由分步乘法計(jì)數(shù)原理得:符合條件的不同排法有種,所以答案應(yīng)填:. 考點(diǎn):排列組合. 16. 【xx福建泉州質(zhì)檢】已知為雙曲線的一條漸近線, 與圓(其中)相交于兩點(diǎn),若,則的離心率為__________. 【答案】 三、解答題(本大題共6小題,共70分.解答時(shí)應(yīng)寫出必要的文字說明、證明過程或演算步驟) 17. 已知的第五項(xiàng)的二項(xiàng)式系數(shù)與第三項(xiàng)的二項(xiàng)式系數(shù)的比是, (1)求n; (2)求展開式中常數(shù)項(xiàng). 【答案】(1)10 (2)5 【解析】 試題分析:(1)由題意知,由此求得n的值;(2)在二項(xiàng)展開式的通項(xiàng)公式中,令x的冪指數(shù)等于0,求出r的值,即可求得常數(shù)項(xiàng) 考點(diǎn):二項(xiàng)式定理 18. 【xx河南聯(lián)考】某大型娛樂場(chǎng)有兩種型號(hào)的水上摩托,管理人員為了了解水上摩托的使用及給娛樂城帶來(lái)的經(jīng)濟(jì)收入情況,對(duì)該場(chǎng)所最近6年水上摩托的使用情況進(jìn)行了統(tǒng)計(jì),得到相關(guān)數(shù)據(jù)如表: 年份 xx xx xx xx xx xx 年份代碼 1 2 3 4 5 6 使用率() 11 13 16 15 20 21 (1)請(qǐng)根據(jù)以上數(shù)據(jù),用最小二乘法求水上摩托使用率關(guān)于年份代碼的線性回歸方程,并預(yù)測(cè)該娛樂場(chǎng)xx年水上摩托的使用率; (2)隨著生活水平的提高,外出旅游的老百姓越來(lái)越多,該娛樂場(chǎng)根據(jù)自身的發(fā)展需要,準(zhǔn)備重新購(gòu)進(jìn)一批水上摩托,其型號(hào)主要是目前使用的Ⅰ型、Ⅱ型兩種,每輛價(jià)格分別為1萬(wàn)元、1.2萬(wàn)元.根據(jù)以往經(jīng)驗(yàn),每輛水上摩托的使用年限不超過四年.娛樂場(chǎng)管理部對(duì)已經(jīng)淘汰的兩款水上摩托的使用情況分別抽取了50輛進(jìn)行統(tǒng)計(jì),使用年限如條形圖所示: 已知每輛水上摩托從購(gòu)入到淘汰平均年收益是0.8萬(wàn)元,若用頻率作為概率,以每輛水上摩托純利潤(rùn)(純利潤(rùn)收益購(gòu)車成本)的期望值為參考值,則該娛樂場(chǎng)的負(fù)責(zé)人應(yīng)該選購(gòu)Ⅰ型水上摩托還是Ⅱ型水上摩托? 附:回歸直線方程為,其中, . 【答案】(1)回歸方程為.預(yù)測(cè)該娛樂場(chǎng)xx年水上摩托的使用率為. (2)答案見解析. 【解析】試題分析: 試題解析: (1)由表格數(shù)據(jù)可得, , , ∴ , ∴, ∴水上摩托使用率關(guān)于年份代碼的線性回歸方程為. 當(dāng)時(shí), , 故預(yù)測(cè)該娛樂場(chǎng)xx年水上摩托的使用率為. (2)由頻率估計(jì)概率,結(jié)合條形圖知Ⅰ型水上摩托每輛可使用1年、2年、3年和4年的概率分別為0.2,0.3,0.3,0.2, ∴每輛Ⅰ型水上摩托可產(chǎn)生的純利潤(rùn)期望值 (萬(wàn)元). 由頻率估計(jì)概率,結(jié)合條形圖知Ⅱ型水上摩托每輛可使用1年、2年、3年和4年的概率分別為0.1,0.2,0.4和0.3, ∴每輛Ⅱ型水上摩托可產(chǎn)生的純利潤(rùn)期望值 (萬(wàn)元). ∵. ∴應(yīng)該選購(gòu)Ⅱ型水上摩托。 點(diǎn)睛: (1)線性回歸方程體現(xiàn)了兩個(gè)變量之間的相關(guān)關(guān)系,求得兩個(gè)變量間的回歸關(guān)系之后可根據(jù)回歸方程進(jìn)行估計(jì),以便為下一步的決策提供參考依據(jù)。 (2)隨機(jī)變量的均值反映了隨機(jī)變量取值的平均水平,均值的大小也可為下一步的決策提供參考依據(jù)。 19. “開門大吉”是某電視臺(tái)推出的游戲益智節(jié)目.選手面對(duì)號(hào)扇大門,依次按響門上的門鈴,門鈴會(huì)播放一段音樂(將一首經(jīng)典流行歌曲以單音色旋律的方式演繹),選手需正確回答出這首歌的名字,方可獲得該扇門對(duì)應(yīng)的家庭夢(mèng)想基金.正確回答每一扇門后,選手可自由選擇帶著獎(jiǎng)金離開比賽,還可繼續(xù)挑戰(zhàn)后面的門以獲得更多獎(jiǎng)金.(獎(jiǎng)金金額累加)但是一旦回答錯(cuò)誤,獎(jiǎng)金將清零,選手也會(huì)離開比賽.在一次場(chǎng)外調(diào)查中,發(fā)現(xiàn)參加比賽的選手多數(shù)分為兩個(gè)年齡段:;(單位:歲),其猜對(duì)歌曲名稱與否人數(shù)如圖所示. (1)寫出列聯(lián)表:判斷是否有的把握認(rèn)為猜對(duì)歌曲名稱與否與年齡有關(guān)? 說明你的理由.(下面的臨界值表供參考) (2)若某選手能正確回答第一、二、三、四扇門的概率分別為,,,,正確回答一個(gè)問題后,選擇繼續(xù)回答下一個(gè)問題的概率是,且各個(gè)問題回答正確與否互不影響.設(shè)該選手所獲夢(mèng)想基金總數(shù)為,求的分布列及數(shù)學(xué)期望. (參考公式其中) 【答案】(1)列聯(lián)表見解析,有的把握認(rèn)為猜對(duì)歌曲名稱與否與年齡有關(guān);(2)分布列見解析,. 【解析】 試題分析:(1)借助題設(shè)條件運(yùn)用列聯(lián)表中的與臨界值表進(jìn)行比對(duì),確定結(jié)果;(2)借助題設(shè)運(yùn)用數(shù)學(xué)期望的計(jì)算公式探求. 試題解析: (1)根據(jù)所給的二維條形圖得到列聯(lián)表, 根據(jù)列聯(lián)表所給的數(shù)據(jù)代入觀測(cè)值的公式得到, ,有的把握認(rèn)為猜對(duì)歌曲名稱與否與年齡有關(guān). (2)的所有能取值分別為:,,,, 則,, ,, . 的分布列如下表: 數(shù)學(xué)期望. 考點(diǎn):列聯(lián)表及數(shù)學(xué)期望的計(jì)算公式等有關(guān)知識(shí)的綜合運(yùn)用. 20. 某班同學(xué)利用國(guó)慶節(jié)進(jìn)行社會(huì)實(shí)踐,對(duì) [25,55]歲的人群隨機(jī)抽取n人進(jìn)行了一次生活習(xí)慣是否符合低碳觀念的調(diào)查,若生活習(xí)慣符合低碳觀念的稱為“低碳族”,否則稱為“非低碳族”,得到如下統(tǒng)計(jì)表和各年齡段人數(shù)頻率分布直方圖: (1)補(bǔ)全頻率分布直方圖并求n、a、p的值; (2)從[40,50)歲年齡段的“低碳族”中采用分層抽樣法抽取18人參加戶外低碳體驗(yàn)活動(dòng),其中選取3人作為領(lǐng)隊(duì),記選取的3名領(lǐng)隊(duì)中年齡在[40,45)歲的人數(shù)為X,求X的分布列和期望E(X). 【答案】(1);(2)相見解析. 【解析】 試題解析:(1)第二組的頻率為,所以高為. 頻率直方圖如下: 第一組的人數(shù)為,頻率為,所以. 第二組的頻率為,所以第二組的人數(shù)為,所以. 第四組的頻率為,第四組的人數(shù)為, 所以. (2)因?yàn)闅q年齡段的“低碳族”與歲年齡段的“低碳族”的比值為,所以采用分層抽樣法抽取18人,歲中有12人,歲中有6人. 隨機(jī)變量服從超幾何分布. ,, ,. 所以隨機(jī)變量的分布列為 ∴數(shù)學(xué)期望. 考點(diǎn):1頻率分布直方圖,分層抽樣;2超幾何分布,期望. 21. 已知橢圓,離心率為,兩焦點(diǎn)分別為,過的直線交橢圓于兩點(diǎn),且的周長(zhǎng)為8. (1)求橢圓的方程; (2)過點(diǎn)作圓的切線交橢圓于兩點(diǎn),求弦長(zhǎng)的最大值. 【答案】(1)(2) 【解析】 根據(jù)直線與圓相切得,即,代入化簡(jiǎn)得,最后利用基本不等式求最值 試題解析:(1)由題得:,........................1分 ,...............................3分 所以.........................4分 又,所以,........................5分 即橢圓的方程為....................6分 (2)由題意知,,設(shè)切線的方程為, 由,得...............7分 設(shè), 則.....................8分 , 由過點(diǎn)的直線與圓相切得,即, 所以....11分 , 當(dāng)且僅當(dāng)時(shí),,所以的最大值為2...................12分 考點(diǎn):直線與橢圓位置關(guān)系 【方法點(diǎn)睛】有關(guān)圓錐曲線弦長(zhǎng)問題的求解方法 涉及弦長(zhǎng)的問題中,應(yīng)熟練地利用根與系數(shù)關(guān)系,設(shè)而不求法計(jì)算弦長(zhǎng);涉及垂直關(guān)系時(shí)也往往利用根與系數(shù)關(guān)系、設(shè)而不求法簡(jiǎn)化運(yùn)算;涉及過焦點(diǎn)的弦的問題,可考慮用圓錐曲線的定義求解。涉及中點(diǎn)弦問題往往利用點(diǎn)差法. 22. 【xx湖北黃岡中學(xué)三?!咳鐖D,在平面直角坐標(biāo)系中,已知圓: ,點(diǎn),點(diǎn)(),以為圓心, 為半徑作圓,交圓于點(diǎn),且的平分線交線段于點(diǎn). (1)當(dāng)變化時(shí),點(diǎn)始終在某圓錐曲線上運(yùn)動(dòng),求曲線的方程; (2)已知直線 過點(diǎn) ,且與曲線交于 兩點(diǎn),記面積為, 面積為,求的取值范圍. 【答案】(1);(2). 【解析】試題分析:(I)推導(dǎo)出△QAB≌△QPB,從而QC+QA=4,由橢圓的定義可知,Q點(diǎn)的軌跡是以C,A為焦點(diǎn), 的橢圓,由此能求出點(diǎn)Q的軌跡方程. (II)設(shè)直線l:x=my-1,設(shè)M(x1,y1),N(x2,y2),推導(dǎo)出,由得,由此利用根的判別式、韋達(dá)定理,結(jié)合已知條件求出的取值范圍. 試題解析: (1)∵, , , ∴≌,∴, ∵, 由橢圓的定義可知, 點(diǎn)的軌跡是以, 為焦點(diǎn), 的橢圓, 故點(diǎn)的軌跡方程為.- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019 2020 年高 數(shù)學(xué) 滾動(dòng) 檢測(cè) 07 解析幾何 統(tǒng)計(jì) 概率 綜合 同步 單元 雙基雙測(cè)
鏈接地址:http://m.appdesigncorp.com/p-2734812.html