2019-2020年高考數學回歸課本 極限與導數教案 舊人教版.doc
《2019-2020年高考數學回歸課本 極限與導數教案 舊人教版.doc》由會員分享,可在線閱讀,更多相關《2019-2020年高考數學回歸課本 極限與導數教案 舊人教版.doc(7頁珍藏版)》請在裝配圖網上搜索。
2019-2020年高考數學回歸課本 極限與導數教案 舊人教版 一、 基礎知識 1.極限定義:(1)若數列{un}滿足,對任意給定的正數ε,總存在正數m,當n>m且n∈N時,恒有|un-A|<ε成立(A為常數),則稱A為數列un當n趨向于無窮大時的極限,記為,另外=A表示x大于x0且趨向于x0時f(x)極限為A,稱右極限。類似地表示x小于x0且趨向于x0時f(x)的左極限。 2.極限的四則運算:如果f(x)=a, g(x)=b,那么[f(x)g(x)]=ab, [f(x)?g(x)]=ab, 3.連續(xù):如果函數f(x)在x=x0處有定義,且f(x)存在,并且f(x)=f(x0),則稱f(x)在x=x0處連續(xù)。 4.最大值最小值定理:如果f(x)是閉區(qū)間[a,b]上的連續(xù)函數,那么f(x)在[a,b]上有最大值和最小值。 5.導數:若函數f(x)在x0附近有定義,當自變量x在x0處取得一個增量Δx時(Δx充分?。蜃兞縴也隨之取得增量Δy(Δy=f(x0+Δx)-f(x0)).若存在,則稱f(x)在x0處可導,此極限值稱為f(x)在點x0處的導數(或變化率),記作(x0)或或,即。由定義知f(x)在點x0連續(xù)是f(x)在x0可導的必要條件。若f(x)在區(qū)間I上有定義,且在每一點可導,則稱它在此敬意上可導。導數的幾何意義是:f(x)在點x0處導數(x0)等于曲線y=f(x)在點P(x0,f(x0))處切線的斜率。 6.幾個常用函數的導數:(1)=0(c為常數);(2)(a為任意常數);(3)(4);(5);(6);(7);(8) 7.導數的運算法則:若u(x),v(x)在x處可導,且u(x)≠0,則 (1);(2);(3)(c為常數);(4);(5)。 8.復合函數求導法:設函數y=f(u),u=(x),已知(x)在x處可導,f(u)在對應的點u(u=(x))處可導,則復合函數y=f[(x)]在點x處可導,且(f[(x)]=. 9.導數與函數的性質:(1)若f(x)在區(qū)間I上可導,則f(x)在I上連續(xù);(2)若對一切x∈(a,b)有,則f(x)在(a,b)單調遞增;(3)若對一切x∈(a,b)有,則f(x)在(a,b)單調遞減。 10.極值的必要條件:若函數f(x)在x0處可導,且在x0處取得極值,則 11.極值的第一充分條件:設f(x)在x0處連續(xù),在x0鄰域(x0-δ,x0+δ)內可導,(1)若當x∈(x-δ,x0)時,當x∈(x0,x0+δ)時,則f(x)在x0處取得極小值;(2)若當x∈(x0-δ,x0)時,當x∈(x0,x0+δ)時,則f(x)在x0處取得極大值。 12.極值的第二充分條件:設f(x)在x0的某領域(x0-δ,x0+δ)內一階可導,在x=x0處二階可導,且。(1)若,則f(x)在x0處取得極小值;(2)若,則f(x)在x0處取得極大值。 13.羅爾中值定理:若函數f(x)在[a,b]上連續(xù),在(a,b)上可導,且f(a)=f(b),則存在ξ∈(a,b),使 [證明] 若當x∈(a,b),f(x)≡f(a),則對任意x∈(a,b),.若當x∈(a,b)時,f(x)≠f(a),因為f(x)在[a,b]上連續(xù),所以f(x)在[a,b]上有最大值和最小值,必有一個不等于f(a),不妨設最大值m>f(a)且f(c)=m,則c∈(a,b),且f(c)為最大值,故,綜上得證。 14.Lagrange中值定理:若f(x)在[a,b]上連續(xù),在(a,b)上可導,則存在ξ∈(a,b),使 [證明] 令F(x)=f(x)-,則F(x)在[a,b]上連續(xù),在(a,b)上可導,且F(a)=F(b),所以由13知存在ξ∈(a,b)使=0,即 15.曲線凸性的充分條件:設函數f(x)在開區(qū)間I內具有二階導數,(1)如果對任意x∈I,,則曲線y=f(x)在I內是下凸的;(2)如果對任意x∈I,,則y=f(x)在I內是上凸的。通常稱上凸函數為凸函數,下凸函數為凹函數。 16.琴生不等式:設α1,α2,…,αn∈R+,α1+α2+…+αn=1。(1)若f(x)是[a,b]上的凸函數,則x1,x2,…,xn∈[a,b]有f(a1x1+a2x2+…+anxn)≤a1f(x1)+a2f(x2)+…+anf(xn). 二、方法與例題 1.極限的求法。 例1 求下列極限:(1);(2);(3);(4) [解](1)=; (2)當a>1時, 當00且)。 [解] (1)3cos(3x+1). (2) (3) (4) (5) 5.用導數討論函數的單調性。 例6 設a>0,求函數f(x)=-ln(x+a)(x∈(0,+∞))的單調區(qū)間。 [解] ,因為x>0,a>0,所以x2+(2a-4)x+a2>0;x2+(2a-4)x+a+<0. (1)當a>1時,對所有x>0,有x2+(2a-4)x+a2>0,即(x)>0,f(x)在(0,+∞)上單調遞增;(2)當a=1時,對x≠1,有x2+(2a-4)x+a2>0,即,所以f(x)在(0,1)內單調遞增,在(1,+∞)內遞增,又f(x)在x=1處連續(xù),因此f(x)在(0,+∞)內遞增;(3)當00,解得x<2-a-或x>2-a+,因此,f(x)在(0,2-a-)內單調遞增,在(2-a+,+∞)內也單調遞增,而當2-a-- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 2019-2020年高考數學回歸課本 極限與導數教案 舊人教版 2019 2020 年高 數學 回歸 課本 極限 導數 教案 舊人
裝配圖網所有資源均是用戶自行上傳分享,僅供網友學習交流,未經上傳用戶書面授權,請勿作他用。
鏈接地址:http://m.appdesigncorp.com/p-2623741.html