2019-2020年高考數(shù)學(xué) 回扣突破30練 第26練 極坐標(biāo)與參數(shù)方程 理.doc
-
資源ID:2621178
資源大?。?span id="iymgmof" class="font-tahoma">1.39MB
全文頁(yè)數(shù):7頁(yè)
- 資源格式: DOC
下載積分:9.9積分
快捷下載
會(huì)員登錄下載
微信登錄下載
微信掃一掃登錄
友情提示
2、PDF文件下載后,可能會(huì)被瀏覽器默認(rèn)打開(kāi),此種情況可以點(diǎn)擊瀏覽器菜單,保存網(wǎng)頁(yè)到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請(qǐng)使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無(wú)水印,預(yù)覽文檔經(jīng)過(guò)壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標(biāo)題沒(méi)有明確說(shuō)明有答案則都視為沒(méi)有答案,請(qǐng)知曉。
|
2019-2020年高考數(shù)學(xué) 回扣突破30練 第26練 極坐標(biāo)與參數(shù)方程 理.doc
2019-2020 年高考數(shù)學(xué) 回扣突破 30 練 第 26 練 極坐標(biāo)與參數(shù)方程 理 一.題型考點(diǎn)對(duì)對(duì)練 1 (極坐標(biāo)化為普通方程)在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立 極坐標(biāo)系.已知直線: 經(jīng)過(guò)點(diǎn),曲線:. ()求直線和曲線的直角坐標(biāo)方程; ()若點(diǎn)為曲線上任意一點(diǎn),且點(diǎn)到直線的距離表示為,求的最小值. ()設(shè),則點(diǎn)到直線的距離, 當(dāng)時(shí),. 2.(與圓的相關(guān)的極坐標(biāo)方程解決方法)在直角坐標(biāo)系中,曲線,曲線的參數(shù)方程為: , (為參數(shù)) ,以為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系. (1)求的極坐標(biāo)方程; (2)射線與的異于原點(diǎn)的交點(diǎn)為,與的交點(diǎn)為,求. 【解析】 (1)將代入曲線的方程: ,可得曲線的極坐標(biāo)方程為, 曲線的普通方程為,將代入,得到的極坐標(biāo)方程為 (2)射線的極坐標(biāo)方程為,與曲線的交點(diǎn)的極徑為 射線與曲線的交點(diǎn)的極徑滿足,解得 所以 3.(參數(shù)方程與極坐標(biāo)方程互化)已知曲線: (為參數(shù))和直線:(為參 數(shù)) (1)將曲線的方程化為普通方程; (2)設(shè)直線與曲線交于兩點(diǎn),且為弦的中點(diǎn),求弦所在的直線方程 (2)將代入, 整理得 由為的中點(diǎn),則 ,即,故,即,所以所求的直線方程為 4.(直線的參數(shù)方程中 t 的幾何意義應(yīng)用)在直角坐標(biāo)系中,直線的參數(shù)方程為 (為參數(shù)) ,以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲 線的極坐標(biāo)方程為 (1)寫出曲線的直角坐標(biāo)方程; (2)已知點(diǎn)的直角坐標(biāo)為,直線與曲線相交于不同的兩點(diǎn),求的取值范圍 ,則 . 5.(極坐標(biāo)與參數(shù)方程的綜合應(yīng)用)以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo) 系,已知曲線的極坐標(biāo)方程為,將曲線:(為參數(shù)) ,經(jīng)過(guò)伸縮變換后得到曲線. (1)求曲線的參數(shù)方程; (2)若點(diǎn)的曲線上運(yùn)動(dòng),試求出到直線的距離的最小值. 【解析】 (1)將曲線:(為參數(shù))化為,由伸縮變換化為 ,代入圓的方程得,即, 可得參數(shù)方程為(為參數(shù)). (2)曲線的極坐標(biāo)方程,化為直角坐標(biāo)方程:,點(diǎn)到的距離 ,點(diǎn)到的距離的最小值為. 二.易錯(cuò)問(wèn)題糾錯(cuò)練 6.(圓的極坐標(biāo)方程應(yīng)用不當(dāng)至錯(cuò))在直角坐標(biāo)系中,曲線,曲線為參數(shù)) , 以坐標(biāo)原點(diǎn) 為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系. (1)求曲線的極坐標(biāo)方程; (2)若射線分別交于兩點(diǎn), 求的最大值. 【注意問(wèn)題】根據(jù) 轉(zhuǎn)化即可 7.(不明確直線的參數(shù)方程中的幾何意義至錯(cuò))在直角坐標(biāo)系中,直線的參數(shù)方程為(為 參數(shù)) ,若以該直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極 坐標(biāo)方程為. ()求直線與曲線的普通方程; ()已知直線與曲線交于兩點(diǎn),設(shè),求的值. 【解析】 ()由得,直線的普通方程;由得,又, 曲線的普通方程為. ()設(shè)對(duì)應(yīng)的參數(shù)為,將代入得,直線的參數(shù)方程為可化為 , , . 【注意問(wèn)題】直線 l 的參數(shù)方程為 , ,整理可得,利用參數(shù)的幾何意義,求的值 三.新題好題好好練 8.在平面直角坐標(biāo)系中,直線的參數(shù)方程為 (為參數(shù)) ,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)系中,圓的極坐標(biāo)方程為 . ()若直線與圓相切,求的值; ()若直線與曲線:(為參數(shù))交于,兩點(diǎn),點(diǎn),求. 9.在極坐標(biāo)系中,曲線,曲線 ,以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為軸 正半軸建立直角坐標(biāo)系,曲線的參數(shù)方程為 (為參數(shù)) (1)求的直角坐標(biāo)方程; (2)與交于不同四點(diǎn),這四點(diǎn)在上的排列順次為,求的值 ,把 代入, 得:,即,故,所以. 10.已知直線的參數(shù)方程是 (是參數(shù)) ,圓的極坐標(biāo)方程為 (1)求圓心的直角坐標(biāo); (2)由直線上的點(diǎn)向圓引切線,求切線長(zhǎng)的最小值 【解析】 (1) , , 圓的直角坐標(biāo)方程為 ,即,圓心的直角坐標(biāo)為. (2)直線上的點(diǎn)向圓引切線,則切線長(zhǎng)為 , 直線上的點(diǎn)向圓引的切線長(zhǎng)的最小值為. 11.在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo) 方程為. ()求出圓的直角坐標(biāo)方程; ()已知圓與軸相交于,兩點(diǎn),直線:關(guān)于點(diǎn)對(duì)稱的直線為.若直線上存在點(diǎn)使得,求實(shí) 數(shù)的最大值. 12.已知直線 (為參數(shù)) ,曲線(為參數(shù)). (1)設(shè)與相交于兩點(diǎn),求; (2)若把曲線上各點(diǎn)的橫坐標(biāo)壓縮為原來(lái)的倍,縱坐標(biāo)壓縮為原來(lái)的倍,得到曲線,設(shè)點(diǎn) 是曲線上的一個(gè)動(dòng)點(diǎn),求它到直線的距離的最大值. 【解析】 (I)的普通方程為,的普通方程為聯(lián)立方程組