2019-2020年高中數(shù)學《微積分基本定理》教案1新人教A版選修2-2.doc
《2019-2020年高中數(shù)學《微積分基本定理》教案1新人教A版選修2-2.doc》由會員分享,可在線閱讀,更多相關(guān)《2019-2020年高中數(shù)學《微積分基本定理》教案1新人教A版選修2-2.doc(3頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學《微積分基本定理》教案1新人教A版選修2-2 一:教學目標 知識與技能目標 通過實例,直觀了解微積分基本定理的含義,會用牛頓-萊布尼茲公式求簡單的定積分 過程與方法 通過實例體會用微積分基本定理求定積分的方法 情感態(tài)度與價值觀 通過微積分基本定理的學習,體會事物間的相互轉(zhuǎn)化、對立統(tǒng)一的辯證關(guān)系,培養(yǎng)學生辯證唯物主義觀點,提高理性思維能力。 二:教學重難點 重點通過探究變速直線運動物體的速度與位移的關(guān)系,使學生直觀了解微積分基本定理的含義,并能正確運用基本定理計算簡單的定積分。 難點 了解微積分基本定理的含義 三:教學過程: 1、復(fù)習: 定積分的概念及用定義計算 2、引入新課 我們講過用定積分定義計算定積分,但其計算過程比較復(fù)雜,所以不是求定積分的一般方法。我們必須尋求計算定積分的新方法,也是比較一般的方法。 變速直線運動中位置函數(shù)與速度函數(shù)之間的聯(lián)系 設(shè)一物體沿直線作變速運動,在時刻t時物體所在位置為S(t),速度為v(t)(), 則物體在時間間隔內(nèi)經(jīng)過的路程可用速度函數(shù)表示為。 另一方面,這段路程還可以通過位置函數(shù)S(t)在上的增量來表達,即 = 而。 對于一般函數(shù),設(shè),是否也有 若上式成立,我們就找到了用的原函數(shù)(即滿足)的數(shù)值差來計算在上的定積分的方法。 注:1:定理 如果函數(shù)是上的連續(xù)函數(shù)的任意一個原函數(shù),則 證明:因為=與都是的原函數(shù),故 -=C() 其中C為某一常數(shù)。 令得-=C,且==0 即有C=,故=+ =-= 令,有 此處并不要求學生理解證明的過程 為了方便起見,還常用表示,即 該式稱之為微積分基本公式或牛頓—萊布尼茲公式。它指出了求連續(xù)函數(shù)定積分的一般方法,把求定積分的問題,轉(zhuǎn)化成求原函數(shù)的問題,是微分學與積分學之間聯(lián)系的橋梁。 它不僅揭示了導(dǎo)數(shù)和定積分之間的內(nèi)在聯(lián)系,同時也提供計算定積分的一種有效方法,為后面的學習奠定了基礎(chǔ)。因此它在教材中處于極其重要的地位,起到了承上啟下的作用,不僅如此,它甚至給微積分學的發(fā)展帶來了深遠的影響,是微積分學中最重要最輝煌的成果。 例1.計算下列定積分: (1); (2)。 解:(1)因為, 所以。 (2))因為, 所以 。 練習:計算 解:由于是的一個原函數(shù),所以根據(jù)牛頓—萊布尼茲公式有 === 例2.計算下列定積分: 。 由計算結(jié)果你能發(fā)現(xiàn)什么結(jié)論?試利用曲邊梯形的面積表示所發(fā)現(xiàn)的結(jié)論。 解:因為, 所以 , , . 可以發(fā)現(xiàn),定積分的值可能取正值也可能取負值,還可能是0: ( l )當對應(yīng)的曲邊梯形位于 x 軸上方時(圖1.6一3 ) ,定積分的值取正值,且等于曲邊梯形的面積; 圖1 . 6 一 3 ( 2 ) (2)當對應(yīng)的曲邊梯形位于 x 軸下方時(圖 1 . 6 一 4 ) ,定積分的值取負值,且等于曲邊梯形的面積的相反數(shù); ( 3)當位于 x 軸上方的曲邊梯形面積等于位于 x 軸下方的曲邊梯形面積時,定積分的值為0(圖 1 . 6 一 5 ) ,且等于位于 x 軸上方的曲邊梯形面積減去位于 x 軸下方的曲邊梯形面積. 例3.汽車以每小時32公里速度行駛,到某處需要減速停車。設(shè)汽車以等減速度=1.8米/秒2剎車,問從開始剎車到停車,汽車走了多少距離? 解:首先要求出從剎車開始到停車經(jīng)過了多少時間。當t=0時,汽車速度=32公里/小時=米/秒8.88米/秒,剎車后汽車減速行駛,其速度為當汽車停住時,速度,故從解得秒 于是在這段時間內(nèi),汽車所走過的距離是 =米,即在剎車后,汽車需走過21.90米才能停住. 微積分基本定理揭示了導(dǎo)數(shù)和定積分之間的內(nèi)在聯(lián)系,同時它也提供了計算定積分的一種有效方法.微積分基本定理是微積分學中最重要的定理,它使微積分學蓬勃發(fā)展起來,成為一門影響深遠的學科,可以毫不夸張地說,微積分基本定理是微積分中最重要、最輝煌的成果. 四:課堂小結(jié): 本節(jié)課借助于變速運動物體的速度與路程的關(guān)系以及圖形得出了特殊情況下的牛頓-萊布尼茲公式.成立,進而推廣到了一般的函數(shù),得出了微積分基本定理,得到了一種求定積分的簡便方法,運用這種方法的關(guān)鍵是找到被積函數(shù)的原函數(shù),這就要求大家前面的求導(dǎo)數(shù)的知識比較熟練,希望,不明白的同學,回頭來多復(fù)習! 五:教學后記: 從教以來,一直困惑于一個問題:課堂上如何突出重點并突破難點。當然,理論方面自己早已爛熟于心,關(guān)鍵是缺乏實踐方面的體驗及感悟。在今天的課堂上,當自己在生物化學班重點及難點均未解決,相反將更多時間糾纏在細節(jié)方面,而物理班級恰好相反,教學效果的強烈反差,終于讓自己對這個問題有了實踐的切身的認識。記得當實習生時,本來一個相當簡單的問題,可在課堂上卻花費了大量時間,更嚴重的是學生卻聽得更為糊涂。一個主要原因在于,對相關(guān)知識結(jié)構(gòu)理解不到位,眉毛胡子一把抓,而難點又無法解決。- 1.請仔細閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認領(lǐng)!既往收益都歸您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 微積分基本定理 2019 2020 年高 數(shù)學 微積分 基本 定理 教案 新人 選修
鏈接地址:http://m.appdesigncorp.com/p-2614546.html