2019-2020年高中數(shù)學(xué) 第三章《 導(dǎo)數(shù)應(yīng)用》教案 北師大版選修2-2.doc
《2019-2020年高中數(shù)學(xué) 第三章《 導(dǎo)數(shù)應(yīng)用》教案 北師大版選修2-2.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019-2020年高中數(shù)學(xué) 第三章《 導(dǎo)數(shù)應(yīng)用》教案 北師大版選修2-2.doc(33頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學(xué) 第三章《 導(dǎo)數(shù)應(yīng)用》教案 北師大版選修2-2 一、教學(xué)目標(biāo):1、知識(shí)與技能:⑴理解函數(shù)單調(diào)性的概念;⑵會(huì)判斷函數(shù)的單調(diào)性,會(huì)求函數(shù)的單調(diào)區(qū)間。2、過(guò)程與方法:⑴通過(guò)具體實(shí)例的分析,經(jīng)歷對(duì)函數(shù)平均變化率和瞬時(shí)變化率的探索過(guò)程;⑵通過(guò)分析具體實(shí)例,經(jīng)歷由平均變化率及渡到瞬時(shí)變化率的過(guò)程。3、情感、態(tài)度與價(jià)值觀:讓學(xué)生感悟由具體到抽象,由特殊到一般的思想方法。 二、教學(xué)重點(diǎn):函數(shù)單調(diào)性的判定 教學(xué)難點(diǎn):函數(shù)單調(diào)區(qū)間的求法 三、教學(xué)方法:探究歸納,講練結(jié)合 四、教學(xué)過(guò)程 (一).創(chuàng)設(shè)情景 函數(shù)是客觀描述世界變化規(guī)律的重要數(shù)學(xué)模型,研究函數(shù)時(shí),了解函數(shù)的贈(zèng)與減、增減的快與慢以及函數(shù)的最大值或最小值等性質(zhì)是非常重要的.通過(guò)研究函數(shù)的這些性質(zhì),我們可以對(duì)數(shù)量的變化規(guī)律有一個(gè)基本的了解.下面,我們運(yùn)用導(dǎo)數(shù)研究函數(shù)的性質(zhì),從中體會(huì)導(dǎo)數(shù)在研究函數(shù)中的作用. (二).新課探究 1.問(wèn)題:圖3.3-1(1),它表示跳水運(yùn)動(dòng) 中高度隨時(shí)間變化的函數(shù)的圖像,圖3.3-1 (2)表示高臺(tái)跳水運(yùn)動(dòng)員的速度隨時(shí)間 變化的函數(shù)的圖 像. 運(yùn)動(dòng)員從起跳到最高點(diǎn),以及從最高點(diǎn)到入 水這兩段時(shí)間的運(yùn)動(dòng)狀態(tài)有什么區(qū)別? 通過(guò)觀察圖像,我們可以發(fā)現(xiàn):(1)運(yùn)動(dòng)員從起點(diǎn)到最高點(diǎn),離水面的高度隨時(shí)間的增加而增加,即是增函數(shù).相應(yīng)地,.(2)從最高點(diǎn)到入水,運(yùn)動(dòng)員離水面的高度隨時(shí)間的增加而減少,即是減函數(shù).相應(yīng)地,. 2.函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系 觀察下面函數(shù)的圖像,探討函數(shù)的單調(diào)性與其導(dǎo)數(shù)正負(fù)的關(guān)系. 如圖3.3-3,導(dǎo)數(shù)表示函數(shù)在點(diǎn)處的切線的斜率. 在處,,切線是“左下右上”式的,這時(shí),函數(shù)在附近單調(diào)遞增; 在處,,切線是“左上右下”式的,這時(shí),函數(shù)在附近單調(diào)遞減. 結(jié)論:函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系 在某個(gè)區(qū)間內(nèi),如果,那么函數(shù)在這個(gè)區(qū)間內(nèi)單調(diào)遞增;如果,那么函數(shù)在這個(gè)區(qū)間內(nèi)單調(diào)遞減. 說(shuō)明:(1)特別的,如果,那么函數(shù)在這個(gè)區(qū)間內(nèi)是常函數(shù). 3.求解函數(shù)單調(diào)區(qū)間的步驟: (1)確定函數(shù)的定義域;(2)求導(dǎo)數(shù);(3)解不等式,解集在定義域內(nèi)的部分為增區(qū)間;(4)解不等式,解集在定義域內(nèi)的部分為減區(qū)間. (三).典例探析 例1、已知導(dǎo)函數(shù)的下列信息: 當(dāng)時(shí),; 當(dāng),或時(shí),; 當(dāng),或時(shí), 試畫出函數(shù)圖像的大致形狀. 解:當(dāng)時(shí),,可知在此區(qū)間內(nèi)單調(diào)遞增; 當(dāng),或時(shí),;可知在此區(qū)間內(nèi)單調(diào)遞減; 當(dāng),或時(shí),,這兩點(diǎn)比較特殊,我們把它稱為“臨界點(diǎn)”. 綜上,函數(shù)圖像的大致形狀如圖3.3-4所示. 例2、判斷下列函數(shù)的單調(diào)性,并求出單調(diào)區(qū)間. (1); (2) (3); (4) 解:(1)因?yàn)?,所以? 因此,在R上單調(diào)遞增,如圖3.3-5(1)所示. (2)因?yàn)?,所以? 當(dāng),即時(shí),函數(shù)單調(diào)遞增; 當(dāng),即時(shí),函數(shù)單調(diào)遞減; 函數(shù)的圖像如圖3.3-5(2)所示. (3)因?yàn)?,所以? 因此,函數(shù)在單調(diào)遞減,如圖3.3-5(3)所示. (4)因?yàn)?,所? . 當(dāng),即 時(shí),函數(shù) ; 當(dāng),即 時(shí),函數(shù) ; 函數(shù)的圖像如圖3.3-5(4)所示. 注:(3)、(4)生練 例3.如圖3.3-6,水以常速(即單位時(shí)間內(nèi)注入水的體積相同)注入下面四種底面積相同的容器中,請(qǐng)分別找出與各容器對(duì)應(yīng)的水的高度與時(shí)間的函數(shù)關(guān)系圖像. 分析:以容器(2)為例,由于容器上細(xì)下粗,所以水以常速注入時(shí),開始階段高度增加得慢,以后高度增加得越來(lái)越快.反映在圖像上,(A)符合上述變化情況.同理可知其它三種容器的情況. 解: 思考:例3表明,通過(guò)函數(shù)圖像,不僅可以看出函數(shù)的增減,還可以看出其變化的快慢.結(jié)合圖像,你能從導(dǎo)數(shù)的角度解釋變化快慢的情況嗎? 一般的,如果一個(gè)函數(shù)在某一范圍內(nèi)導(dǎo)數(shù)的絕對(duì)值較大,那么函數(shù)在這個(gè)范圍內(nèi)變化的快,這時(shí),函數(shù)的圖像就比較“陡峭”;反之,函數(shù)的圖像就“平緩”一些.如圖3.3-7所示,函數(shù)在或內(nèi)的圖像“陡峭”,在或內(nèi)的圖像“平緩”. 例4、求證:函數(shù)在區(qū)間內(nèi)是減函數(shù). 證明:因?yàn)? 當(dāng)即時(shí),,所以函數(shù)在區(qū)間內(nèi)是減函數(shù). 說(shuō)明:證明可導(dǎo)函數(shù)在內(nèi)的單調(diào)性步驟:(1)求導(dǎo)函數(shù);(2)判斷在內(nèi)的符號(hào);(3)做出結(jié)論:為增函數(shù),為減函數(shù). (四).課堂練習(xí):課本P59頁(yè)練習(xí)1(1);2 (五).回顧總結(jié):(1)函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系;(2)求解函數(shù)單調(diào)區(qū)間;(3)證明可導(dǎo)函數(shù)在內(nèi)的單調(diào)性 (六).布置作業(yè):課本P62頁(yè)習(xí)題3-1A組1、2 五、教后反思: 第二課時(shí) 導(dǎo)數(shù)與函數(shù)的單調(diào)性(二) 一、教學(xué)目標(biāo):1、知識(shí)與技能:⑴理解函數(shù)單調(diào)性的概念;⑵會(huì)判斷函數(shù)的單調(diào)性,會(huì)求函數(shù)的單調(diào)區(qū)間。2、過(guò)程與方法:⑴通過(guò)具體實(shí)例的分析,經(jīng)歷對(duì)函數(shù)平均變化率和瞬時(shí)變化率的探索過(guò)程;⑵通過(guò)分析具體實(shí)例,經(jīng)歷由平均變化率及渡到瞬時(shí)變化率的過(guò)程。3、情感、態(tài)度與價(jià)值觀:讓學(xué)生感悟由具體到抽象,由特殊到一般的思想方法。 二、教學(xué)重點(diǎn):函數(shù)單調(diào)性的判定 教學(xué)難點(diǎn):函數(shù)單調(diào)區(qū)間的求法 三、教學(xué)方法:探究歸納,講練結(jié)合 四、教學(xué)過(guò)程 (一)、問(wèn)題情境 1.情境:作為函數(shù)變化率的導(dǎo)數(shù)刻畫了函數(shù)變化的趨勢(shì)(上升或下降的陡峭程度),而函數(shù)的單調(diào)性也是對(duì)函數(shù)變化的一種刻畫.2.問(wèn)題:那么導(dǎo)數(shù)與函數(shù)的單調(diào)性有什么聯(lián)系呢? (二)、學(xué)生活動(dòng):結(jié)合一個(gè)單調(diào)函數(shù)的圖象,思考在函數(shù)單調(diào)遞增的部分其切線的斜率的符號(hào). (三)、建構(gòu)數(shù)學(xué) 如果函數(shù)在區(qū)間上是增函數(shù),那么對(duì)任意,,當(dāng)時(shí),,即與同號(hào),從而,即. 這表明,導(dǎo)數(shù)大于與函數(shù)單調(diào)遞增密切相關(guān). 一般地,我們有下面的結(jié)論:設(shè)函數(shù),如果在某區(qū)間上,那么為該區(qū)間上的增函數(shù);如果在某區(qū)間上,那么為該區(qū)間上的減函數(shù);如果在某區(qū)間上,那么為該區(qū)間上的常數(shù)函數(shù). 上述結(jié)論可以用下圖來(lái)直觀理解. 思考:試結(jié)合:如果在某區(qū)間上單調(diào)遞增,那么在該區(qū)間上必有 嗎? 說(shuō)明:若為某區(qū)間上的增(減)函數(shù),則在該區(qū)間上()不一定成立.即如果在某區(qū)間上()是在該區(qū)間上是增(減)函數(shù)的充分不必要條件. (四)、知識(shí)運(yùn)用 1、例題探析:例1、確定函數(shù)在哪個(gè)區(qū)間內(nèi)是增函數(shù),哪個(gè)區(qū)間內(nèi)是減函數(shù). 解:.令,解得.因此,在區(qū)間內(nèi),是增函數(shù). 同理可得,在區(qū)間內(nèi),是減函數(shù)(如左圖). 例2、確定函數(shù)在哪些區(qū)間內(nèi)是增函數(shù). 解:.令,解得或. 因此,在區(qū)間內(nèi),是增函數(shù);在區(qū)間內(nèi),也是增函數(shù). 例3、確定函數(shù),的單調(diào)減區(qū)間. 解:.令,即,又,所以. 故區(qū)間是函數(shù),的單調(diào)減區(qū)間.注意:所求的單調(diào)區(qū)間必須在函數(shù)的定義域內(nèi). 例4、已知曲線,(1)用導(dǎo)數(shù)證明此函數(shù)在上單調(diào)遞增;(2)求曲線的切線的斜率的取值范圍.(1)證明:恒成立.所以此函數(shù)在上遞增.(2)解:由(1)可知,所以的斜率的范圍是. 2、鞏固練習(xí):練習(xí)冊(cè)1,2,3. (五).回顧小結(jié):函數(shù)單調(diào)性與導(dǎo)數(shù)的關(guān)系:函數(shù),如果在某區(qū)間上,那么為該區(qū)間上的增函數(shù);如果在某區(qū)間上,那么為該區(qū)間上的減函數(shù);如果在某區(qū)間上,那么為該區(qū)間上的常數(shù)函數(shù)。用導(dǎo)數(shù)求函數(shù)單調(diào)區(qū)間的步驟: ①求函數(shù)f(x)的導(dǎo)數(shù)f′(x)。②令f′(x) 0解不等式,得x的范圍就是遞增區(qū)間。③令f′(x)0解不等式,得x的范圍,就是遞減區(qū)間。 (六)、作業(yè)布置:1、已知函數(shù)的圖象過(guò)點(diǎn)P(0,2),且在點(diǎn)M處的切線方程為.(Ⅰ)求函數(shù)的解析式;(Ⅱ)求函數(shù)的單調(diào)區(qū)間。 解:(Ⅰ)由的圖象經(jīng)過(guò)P(0,2),知d=2,所以 由在處的切線方程是,知 故所求的解析式是 (Ⅱ) 解得 當(dāng) 當(dāng)故內(nèi)是增函數(shù), 在內(nèi)是減函數(shù),在內(nèi)是增函數(shù). 2、已知向量在區(qū)間(-1,1)上是增函數(shù),求t的取值范圍。 解: 依定義 的圖象是開口向下的拋物線, 五、教后反思: 第三課時(shí) 導(dǎo)數(shù)與函數(shù)的單調(diào)性(三) 一、教學(xué)目標(biāo):1.正確理解利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性的原理;2.掌握利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性的方法 二、教學(xué)重難點(diǎn):利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性. 三、教學(xué)方法:探究歸納,講練結(jié)合 四、教學(xué)過(guò)程 (一)、復(fù)習(xí): 1. 函數(shù)的單調(diào)性. 對(duì)于任意的兩個(gè)數(shù)x1,x2∈I,且當(dāng)x1<x2時(shí),都有f(x1)<f(x2),那么函數(shù)f(x)就是區(qū)間I上的增函數(shù). 對(duì)于任意的兩個(gè)數(shù)x1,x2∈I,且當(dāng)x1<x2時(shí),都有f(x1)>f(x2),那么函數(shù)f(x)就是區(qū)間I上的減函數(shù).2. 導(dǎo)數(shù)的概念及其四則運(yùn)算3、定義:一般地,設(shè)函數(shù)y=f(x) 在某個(gè)區(qū)間內(nèi)有導(dǎo)數(shù),如果在這個(gè)區(qū)間內(nèi)0,那么函數(shù)y=f(x) 在為這個(gè)區(qū)間內(nèi)的增函數(shù);如果在這個(gè)區(qū)間內(nèi)0,那么函數(shù)y=f(x) 在為這個(gè)區(qū)間內(nèi)的減函數(shù) 4、用導(dǎo)數(shù)求函數(shù)單調(diào)區(qū)間的步驟:①求函數(shù)f(x)的導(dǎo)數(shù)f′(x).②令f′(x) 0解不等式,得x的范圍就是遞增區(qū)間.③令f′(x)0解不等式,得x的范圍,就是遞減區(qū)間. (二)、探究新課 例1、確定函數(shù)f(x)=x2-2x+4在哪個(gè)區(qū)間內(nèi)是增函數(shù),哪個(gè)區(qū)間內(nèi)是減函數(shù). 解:f′(x)=(x2-2x+4)′=2x-2.令2x-2>0,解得x>1. ∴當(dāng)x∈(1,+∞)時(shí),f′(x)>0,f(x)是增函數(shù).令2x-2<0,解得x<1. ∴當(dāng)x∈(-∞,1)時(shí),f′(x)<0,f(x)是減函數(shù). 例2、確定函數(shù)f(x)=2x3-6x2+7在哪個(gè)區(qū)間內(nèi)是增函數(shù),哪個(gè)區(qū)間內(nèi)是減函數(shù). 解:f′(x)=(2x3-6x2+7)′=6x2-12x,令6x2-12x>0,解得x>2或x<0 ∴當(dāng)x∈(-∞,0)時(shí),f′(x)>0,f(x)是增函數(shù).當(dāng)x∈(2,+∞)時(shí),f′(x)>0,f(x)是增函數(shù). 令6x2-12x<0,解得0<x<2.∴當(dāng)x∈(0,2)時(shí),f′(x)<0,f(x)是減函數(shù). 例3、證明函數(shù)f(x)=在(0,+∞)上是減函數(shù). 證法一:(用以前學(xué)的方法證)任取兩個(gè)數(shù)x1,x2∈(0,+∞)設(shè)x1<x2. f(x1)-f(x2)=∵x1>0,x2>0,∴x1x2>0 ∵x1<x2,∴x2-x1>0, ∴>0∴f(x1)-f(x2)>0,即f(x1)>f(x2) ∴f(x)= 在(0,+∞)上是減函數(shù). 證法二:(用導(dǎo)數(shù)方法證) ∵f′(x)=( )′=(-1)x-2=-,x>0,∴x2>0,∴-<0. ∴f′(x)<0, ∴f(x)= 在(0,+∞)上是減函數(shù). 例4、求函數(shù)y=x2(1-x)3的單調(diào)區(qū)間. 解:y′=[x2(1-x)3]′=2x(1-x)3+x23(1-x)2(-1) =x(1-x)2[2(1-x)-3x]=x(1-x)2(2-5x) 令x(1-x)2(2-5x)>0,解得0<x<. ∴y=x2(1-x)3的單調(diào)增區(qū)間是(0,) 令x(1-x)2(2-5x)<0,解得x<0或x>且x≠1.∵為拐點(diǎn), ∴y=x2(1-x)3的單調(diào)減區(qū)間是(-∞,0),(,+∞) 例5、已知函數(shù) 在區(qū)間上是增函數(shù),求實(shí)數(shù)的取值范圍. 解:,因?yàn)樵趨^(qū)間上是增函數(shù),所以對(duì)恒成立,即對(duì)恒成立,解之得:;所以實(shí)數(shù)的取值范圍為. 說(shuō)明:已知函數(shù)的單調(diào)性求參數(shù)的取值范圍是一種常見(jiàn)的題型,常利用導(dǎo)數(shù)與函數(shù)單調(diào)性關(guān)系:即“若函數(shù)單調(diào)遞增,則;若函數(shù)單調(diào)遞減,則”來(lái)求解,注意此時(shí)公式中的等號(hào)不能省略,否則漏解. (三)、小結(jié):本節(jié)課學(xué)習(xí)了利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性. (四)、課堂練習(xí):第62頁(yè)練習(xí)4 (五)、課后作業(yè):1、求證:函數(shù)在區(qū)間內(nèi)是減函數(shù). 證明:因?yàn)? 當(dāng)即時(shí),,所以函數(shù)在區(qū)間內(nèi)是減函數(shù). 2、已知函數(shù) 在區(qū)間上是增函數(shù),求實(shí)數(shù)的取值范圍. 解:,因?yàn)樵趨^(qū)間上是增函數(shù),所以對(duì)恒成立,即對(duì)恒成立,解之得: 所以實(shí)數(shù)的取值范圍為。 五、教后反思: 第四課時(shí) 函數(shù)的極值 一、教學(xué)目標(biāo):1、知識(shí)與技能:⑴理解函數(shù)極值的概念;⑵會(huì)求給定函數(shù)在某區(qū)間上的極值。 2、過(guò)程與方法:通過(guò)具體實(shí)例的分析,會(huì)對(duì)函數(shù)的極大值與極小值。3、情感、態(tài)度與價(jià)值觀:讓學(xué)生感悟由具體到抽象,由特殊到一般的思想方法。 二、教學(xué)重點(diǎn):函數(shù)極值的判定方法 教學(xué)難點(diǎn):函數(shù)極值的判定方法 三、教學(xué)方法:探究歸納,講練結(jié)合 四、教學(xué)過(guò)程 (一)、復(fù)習(xí)引入 1、常見(jiàn)函數(shù)的導(dǎo)數(shù)公式: ;;;;; ;; 2、法則1 法則2 , 法則3 3、復(fù)合函數(shù)的導(dǎo)數(shù): 4、函數(shù)的導(dǎo)數(shù)與函數(shù)的單調(diào)性的關(guān)系:設(shè)函數(shù)y=f(x) 在某個(gè)區(qū)間內(nèi)有導(dǎo)數(shù),如果在這個(gè)區(qū)間內(nèi)>0,那么函數(shù)y=f(x) 在為這個(gè)區(qū)間內(nèi)的增函數(shù);如果在這個(gè)區(qū)間內(nèi)<0,那么函數(shù)y=f(x) 在為這個(gè)區(qū)間內(nèi)的減函數(shù) 5、用導(dǎo)數(shù)求函數(shù)單調(diào)區(qū)間的步驟:①求函數(shù)f(x)的導(dǎo)數(shù)f′(x). ②令f′(x)>0解不等式,得x的范圍就是遞增區(qū)間.③令f′(x)<0解不等式,得x的范圍,就是遞減區(qū)間 (二)、探究新課 1、極大值: 一般地,設(shè)函數(shù)f(x)在點(diǎn)x0附近有定義,如果對(duì)x0附近的所有的點(diǎn)都有f(x)<f(x0),就說(shuō)f(x0)是函數(shù)f(x)的一個(gè)極大值,記作y極大值=f(x0),x0是極大值點(diǎn) 2、極小值:一般地,設(shè)函數(shù)f(x)在x0附近有定義,如果對(duì)x0附近的所有的點(diǎn),都有f(x)>f(x0).就說(shuō)f(x0)是函數(shù)f(x)的一個(gè)極小值,記作y極小值=f(x0),x0是極小值點(diǎn) 3、極大值與極小值統(tǒng)稱為極值 在定義中,取得極值的點(diǎn)稱為極值點(diǎn),極值點(diǎn)是自變量的值,極值指的是函數(shù)值請(qǐng)注意以下幾點(diǎn): (?。O值是一個(gè)局部概念由定義,極值只是某個(gè)點(diǎn)的函數(shù)值與它附近點(diǎn)的函數(shù)值比較是最大或最小并不意味著它在函數(shù)的整個(gè)的定義域內(nèi)最大或最小 (ⅱ)函數(shù)的極值不是唯一的即一個(gè)函數(shù)在某區(qū)間上或定義域內(nèi)極大值或極小值可以不止一個(gè) (ⅲ)極大值與極小值之間無(wú)確定的大小關(guān)系即一個(gè)函數(shù)的極大值未必大于極小值,如下圖所示,是極大值點(diǎn),是極小值點(diǎn),而> (ⅳ)函數(shù)的極值點(diǎn)一定出現(xiàn)在區(qū)間的內(nèi)部,區(qū)間的端點(diǎn)不能成為極值點(diǎn)而使函數(shù)取得最大值、最小值的點(diǎn)可能在區(qū)間的內(nèi)部,也可能在區(qū)間的端點(diǎn) 4、判別f(x0)是極大、極小值的方法:若滿足,且在的兩側(cè)的導(dǎo)數(shù)異號(hào),則是的極值點(diǎn),是極值,并且如果在兩側(cè)滿足“左正右負(fù)”,則是的極大值點(diǎn),是極大值;如果在兩側(cè)滿足“左負(fù)右正”,則是的極小值點(diǎn),是極小值 5、求可導(dǎo)函數(shù)f(x)的極值的步驟:(1)確定函數(shù)的定義區(qū)間,求導(dǎo)數(shù);(2)求方程=0的根;(3)用函數(shù)的導(dǎo)數(shù)為0的點(diǎn),順次將函數(shù)的定義區(qū)間分成若干小開區(qū)間,并列成表格.檢查在方程根左右的值的符號(hào),如果左正右負(fù),那么f(x)在這個(gè)根處取得極大值;如果左負(fù)右正,那么f(x)在這個(gè)根處取得極小值;如果左右不改變符號(hào),那么f(x)在這個(gè)根處無(wú)極值。 (三)、典例探析 例1、求的極值 解: 因?yàn)椋浴? 下面分兩種情況討論:(1)當(dāng)>0,即,或時(shí);(2)當(dāng)<0,即時(shí).當(dāng)x變化時(shí), ,的變化情況如下表: -2 (-2,2) 2 + 0 - 0 + ↗ 極大值 ↘ 極小值 ↗ 因此,當(dāng)時(shí),有極大值,并且極大值為;當(dāng)時(shí),有極小值,并且極小值為。函數(shù)的圖像如圖所示。 例2、求y=(x2-1)3+1的極值 解:y′=6x(x2-1)2=6x(x+1)2(x-1)2令y′=0解得x1=-1,x2=0,x3=1 當(dāng)x變化時(shí),y′,y的變化情況如下表 -1 (-1,0) 0 (0,1) 1 - 0 - 0 + 0 + ↘ 無(wú)極值 ↘ 極小值0 ↗ 無(wú)極值 ↗ ∴當(dāng)x=0時(shí),y有極小值且y極小值=0 (四)、鞏固練習(xí):1.求下列函數(shù)的極值.(1)y=x2-7x+6 (2)y=x3-27x (1)解:y′=(x2-7x+6)′=2x-7令y′=0,解得x=.當(dāng)x變化時(shí),y′,y的變化情況如下表. - 0 + ↘ 極小值 ↗ ∴當(dāng)x=時(shí),y有極小值,且y極小值=-. (2)解:y′=(x3-27x)′=3x2-27=3(x+3)(x-3),令y′=0,解得x1=-3,x2=3. 當(dāng)x變化時(shí),y′,y的變化情況如下表. -3 (-3,3) 3 + 0 - 0 + ↗ 極大值54 ↘ 極小值-54 ↗ ∴當(dāng)x=-3時(shí),y有極大值,且y極大值=54.當(dāng)x=3時(shí),y有極小值,且y極小值=-54 (五)、小結(jié):函數(shù)的極大、極小值的定義以及判別方法.求可導(dǎo)函數(shù)f(x)的極值的三個(gè)步驟.還有要弄清函數(shù)的極值是就函數(shù)在某一點(diǎn)附近的小區(qū)間而言的,在整個(gè)定義區(qū)間可能有多個(gè)極值,且要在這點(diǎn)處連續(xù).可導(dǎo)函數(shù)極值點(diǎn)的導(dǎo)數(shù)為0,但導(dǎo)數(shù)為零的點(diǎn)不一定是極值點(diǎn),要看這點(diǎn)兩側(cè)的導(dǎo)數(shù)是否異號(hào).函數(shù)的不可導(dǎo)點(diǎn)可能是極值點(diǎn) 求極值的具體步驟:第一,求導(dǎo)數(shù)f′(x).第二,令f′(x)=0求方程的根,第三,列表,檢查f′(x)在方程根左右的值的符號(hào),如果左正右負(fù),那么f(x)在這個(gè)根處取得極大值;如果左負(fù)右正,那么f(x)在這個(gè)根處取得極小值,如果左右都是正,或者左右都是負(fù),那么f(x)在這根處無(wú)極值.如果函數(shù)在某些點(diǎn)處連續(xù)但不可導(dǎo),也需要考慮這些點(diǎn)是否是極值點(diǎn) (六)、課后作業(yè):課本P62 練習(xí)題(1)、(2) 課本習(xí)題3-1中 A組3 五、教后反思: 2 導(dǎo)數(shù)在實(shí)際問(wèn)題中的應(yīng)用 第五課時(shí) 函數(shù)的最大值與最小值(一) 一、教學(xué)目標(biāo):1、知識(shí)與技能:會(huì)求函數(shù)的最大值與最小值。2、過(guò)程與方法:通過(guò)具體實(shí)例的分析,會(huì)利用導(dǎo)數(shù)求函數(shù)的最值。3、情感、態(tài)度與價(jià)值觀:讓學(xué)生感悟由具體到抽象,由特殊到一般的思想方法。 二、教學(xué)重點(diǎn):函數(shù)最大值與最小值的求法 教學(xué)難點(diǎn):函數(shù)最大值與最小值的求法 三、教學(xué)方法:探究歸納,講練結(jié)合 四、教學(xué)過(guò)程: (一)、復(fù)習(xí)引入 1、極大值: 一般地,設(shè)函數(shù)f(x)在點(diǎn)x0附近有定義,如果對(duì)x0附近的所有的點(diǎn),都有f(x)<f(x0),就說(shuō)f(x0)是函數(shù)f(x)的一個(gè)極大值,記作y極大值=f(x0),x0是極大值點(diǎn) 2、極小值:一般地,設(shè)函數(shù)f(x)在x0附近有定義,如果對(duì)x0附近的所有的點(diǎn),都有f(x)>f(x0).就說(shuō)f(x0)是函數(shù)f(x)的一個(gè)極小值,記作y極小值=f(x0),x0是極小值點(diǎn) 3、極大值與極小值統(tǒng)稱為極值注意以下幾點(diǎn): (?。O值是一個(gè)局部概念由定義,極值只是某個(gè)點(diǎn)的函數(shù)值與它附近點(diǎn)的函數(shù)值比較是最大或最小并不意味著它在函數(shù)的整個(gè)的定義域內(nèi)最大或最小 (ⅱ)函數(shù)的極值不是唯一的即一個(gè)函數(shù)在某區(qū)間上或定義域內(nèi)極大值或極小值可以不止一個(gè) (ⅲ)極大值與極小值之間無(wú)確定的大小關(guān)系即一個(gè)函數(shù)的極大值未必大于極小值,如下圖所示,是極大值點(diǎn),是極小值點(diǎn),而> (ⅳ)函數(shù)的極值點(diǎn)一定出現(xiàn)在區(qū)間的內(nèi)部,區(qū)間的端點(diǎn)不能成為極值點(diǎn) 而使函數(shù)取得最大值、最小值的點(diǎn)可能在區(qū)間的內(nèi)部,也可能在區(qū)間的端點(diǎn) 我們知道,極值反映的是函數(shù)在某一點(diǎn)附近的局部性質(zhì),而不是函數(shù)在整個(gè)定義域內(nèi)的性質(zhì).也就是說(shuō),如果是函數(shù)的極大(?。┲迭c(diǎn),那么在點(diǎn)附近找不到比更大(小)的值.但是,在解決實(shí)際問(wèn)題或研究函數(shù)的性質(zhì)時(shí),我們更關(guān)心函數(shù)在某個(gè)區(qū)間上,哪個(gè)至最大,哪個(gè)值最?。绻呛瘮?shù)的最大(?。┲?,那么不?。ù螅┯诤瘮?shù)在相應(yīng)區(qū)間上的所有函數(shù)值. (二)、探究新課 1、函數(shù)的最大值和最小值 觀察圖中一個(gè)定義在閉區(qū)間上的函數(shù)的圖象.圖中與是極小值,是極大值.函數(shù)在上的最大值是,最小值是. 結(jié)論:一般地,在閉區(qū)間上函數(shù)的圖像是一條連續(xù)不斷的曲線,那么函數(shù)在上必有最大值與最小值. 說(shuō)明:⑴在開區(qū)間內(nèi)連續(xù)的函數(shù)不一定有最大值與最小值.如函數(shù)在內(nèi)連續(xù),但沒(méi)有最大值與最小值; ⑵函數(shù)的最值是比較整個(gè)定義域內(nèi)的函數(shù)值得出的;函數(shù)的極值是比較極值點(diǎn)附近函數(shù)值得出的. ⑶函數(shù)在閉區(qū)間上連續(xù),是在閉區(qū)間上有最大值與最小值的充分條件而非必要條件. (4)函數(shù)在其定義區(qū)間上的最大值、最小值最多各有一個(gè),而函數(shù)的極值可能不止一個(gè),也可能沒(méi)有一個(gè) 2、“最值”與“極值”的區(qū)別和聯(lián)系 ⑴最值”是整體概念,是比較整個(gè)定義域內(nèi)的函數(shù)值得出的,具有絕對(duì)性;而“極值”是個(gè)局部概念,是比較極值點(diǎn)附近函數(shù)值得出的,具有相對(duì)性. ⑵從個(gè)數(shù)上看,一個(gè)函數(shù)在其定義域上的最值是唯一的;而極值不唯一; ⑶函數(shù)在其定義區(qū)間上的最大值、最小值最多各有一個(gè),而函數(shù)的極值可能不止一個(gè),也可能沒(méi)有一個(gè) ⑷極值只能在定義域內(nèi)部取得,而最值可以在區(qū)間的端點(diǎn)處取得,有極值的未必有最值,有最值的未必有極值;極值有可能成為最值,最值只要不在端點(diǎn)必定是極值. 3、利用導(dǎo)數(shù)求函數(shù)的最值步驟: 由上面函數(shù)的圖象可以看出,只要把連續(xù)函數(shù)所有的極值與定義區(qū)間端點(diǎn)的函數(shù)值進(jìn)行比較,就可以得出函數(shù)的最值了. 設(shè)函數(shù)在上連續(xù),在內(nèi)可導(dǎo),則求在上的最大值與最小值的步驟如下:⑴求在內(nèi)的極值;⑵將的各極值與、比較得出函數(shù)在上的最值 (三)、例題探析 例1、求函數(shù)在區(qū)間上的最大值與最小值 解:先求導(dǎo)數(shù),得 令=0即解得 導(dǎo)數(shù)的正負(fù)以及,如下表 X -2 (-2,-1) -1 (-1,0) 0 (0,1) 1 (1,2) 2 y/ - 0 + 0 - 0 + y 13 ↘ 4 ↗ 5 ↘ 4 ↗ 13 從上表知,當(dāng)時(shí),函數(shù)有最大值13,當(dāng)時(shí),函數(shù)有最小值4 例2、已知,∈(0,+∞).是否存在實(shí)數(shù),使同時(shí)滿足下列兩個(gè)條件:(1))在(0,1)上是減函數(shù),在[1,+∞)上是增函數(shù);(2)的最小值是1,若存在,求出,若不存在,說(shuō)明理由. 解:設(shè)g(x)= ∵f(x)在(0,1)上是減函數(shù),在[1,+∞)上是增函數(shù) ∴g(x)在(0,1)上是減函數(shù),在[1,+∞)上是增函數(shù). ∴ ∴ 解得 經(jīng)檢驗(yàn),a=1,b=1時(shí),f(x)滿足題設(shè)的兩個(gè)條件。 (四)、課堂練習(xí):1.下列說(shuō)法正確的是( ) A.函數(shù)的極大值就是函數(shù)的最大值 B.函數(shù)的極小值就是函數(shù)的最小值 C.函數(shù)的最值一定是極值 D.在閉區(qū)間上的連續(xù)函數(shù)一定存在最值 2.函數(shù)y=f(x)在區(qū)間[a,b]上的最大值是M,最小值是m,若M=m,則f′(x) ( ) A.等于0 B.大于0 C.小于0 D.以上都有可能 3.函數(shù)y=,在[-1,1]上的最小值為( ) A.0 B.-2 C.-1 D. 4.函數(shù)y=的最大值為( )。A. B.1 C. D. 5.設(shè)y=|x|3,那么y在區(qū)間[-3,-1]上的最小值是( ) A.27 B.-3 C.-1 D.1 6.設(shè)f(x)=ax3-6ax2+b在區(qū)間[-1,2]上的最大值為3,最小值為-29,且a>b,則( ) A.a=2,b=29 B.a=2,b=3 C.a=3,b=2 D.a=-2,b=-3 (五)、小結(jié) :⑴函數(shù)在閉區(qū)間上的最值點(diǎn)必在下列各種點(diǎn)之中:導(dǎo)數(shù)等于零的點(diǎn),導(dǎo)數(shù)不存在的點(diǎn),區(qū)間端點(diǎn);⑵函數(shù)在閉區(qū)間上連續(xù),是在閉區(qū)間上有最大值與最小值的充分條件而非必要條件;⑶閉區(qū)間上的連續(xù)函數(shù)一定有最值;開區(qū)間內(nèi)的可導(dǎo)函數(shù)不一定有最值,若有唯一的極值,則此極值必是函數(shù)的最值。 (六)、作業(yè)布置:課本P69頁(yè)習(xí)題3-2A組2、4 五、教學(xué)反思: 第六課時(shí) 函數(shù)的最大值與最小值(二) 一、教學(xué)目標(biāo):理解并掌握函數(shù)最大值與最小值的意義及其求法.弄請(qǐng)函數(shù)極值與最值的區(qū)別與聯(lián)系.養(yǎng)成“整體思維”的習(xí)慣,提高應(yīng)用知識(shí)解決實(shí)際問(wèn)題的能力. 二、教學(xué)重點(diǎn):求函數(shù)的最值及求實(shí)際問(wèn)題的最值. 教學(xué)難點(diǎn):求實(shí)際問(wèn)題的最值.掌握求最值的方法關(guān)鍵是嚴(yán)格套用求最值的步驟,突破難點(diǎn)要把實(shí)際問(wèn)題“數(shù)學(xué)化”,即建立數(shù)學(xué)模型. 三、教學(xué)方法:探究歸納,講練結(jié)合 四、教學(xué)過(guò)程 (一)復(fù)習(xí)引入 1.函數(shù)y = xe–x在x∈[0, 4]的最小值為( A ) A.0 B. C. D. 2.給出下面四個(gè)命題. ①函數(shù)y = x2 – 5x + 4 (x∈[–1,3])的最大值為10,最小值為; ②函數(shù)y = 2x2 – 4x + 1 (x∈(2, 4))的最大值為17,最小值為1; ③函數(shù)y = x3 – 12x (x∈(–3, 3))的最大值為16,最小值為– 16; ④函數(shù)y = x3 – 12x (x∈(–2, 2))無(wú)最大值,也無(wú)最小值. 其中正確的命題有( C ) A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè) (二)、利用導(dǎo)數(shù)求函數(shù)的最值步驟: 由上面函數(shù)的圖象可以看出,只要把連續(xù)函數(shù)所有的極值與定義區(qū)間端點(diǎn)的函數(shù)值進(jìn)行比較,就可以得出函數(shù)的最值了. 設(shè)函數(shù)在上連續(xù),在內(nèi)可導(dǎo),則求在上的最大值與最小值的步驟如下: ⑴求在內(nèi)的極值; ⑵將的各極值與、比較得出函數(shù)在上的最值 說(shuō)明:⑴在開區(qū)間內(nèi)連續(xù)的函數(shù)不一定有最大值與最小值.如函數(shù)在內(nèi)連續(xù),但沒(méi)有最大值與最小值; ⑵函數(shù)的最值是比較整個(gè)定義域內(nèi)的函數(shù)值得出的;函數(shù)的極值是比較極值點(diǎn)附近函數(shù)值得出的. ⑶函數(shù)在閉區(qū)間上連續(xù),是在閉區(qū)間上有最大值與最小值的充分條件而非必要條件. (4)函數(shù)在其定義區(qū)間上的最大值、最小值最多各有一個(gè),而函數(shù)的極值可能不止一個(gè),也可能沒(méi)有一個(gè) (三)典例探析 例1、求函數(shù)的最大值與最小值。 解析: 列表: - 0 + 0 - ↘ 極小值 ↗ 極大值 ↘ ∴,, , 練習(xí):求函數(shù)的最大值與最小值。 例2、已知函數(shù),(I)求函數(shù)在上的最大值和最小值.(II)過(guò)點(diǎn)作曲線的切線,求此切線的方程. 解析:(I), 當(dāng)或時(shí),, 為函數(shù)的單調(diào)增區(qū)間 當(dāng)時(shí),, 為函數(shù)的單調(diào)減區(qū)間 又因?yàn)椋? 所以當(dāng)時(shí), 當(dāng)時(shí), (II)設(shè)切點(diǎn)為,則所求切線方程為 由于切線過(guò)點(diǎn),, 解得或 所以切線方程為即 或 練習(xí):已知函數(shù)。若f(x)在[-1,2]上的最大值為3,最小值為29,求:a、b的值 例3、已知a為實(shí)數(shù),(Ⅰ)求導(dǎo)數(shù);(Ⅱ)若,求在上的最大值和最小值;(Ⅲ)若在和[2,+∞]上都是遞增的,求a的取值范圍。 解:(Ⅰ)由原式得 ∴ (Ⅱ)由 得,此時(shí)有. 由得或x=-1 , 又 所以f(x)在[--2,2]上的最大值為最小值為 (Ⅲ)的圖象為開口向上且過(guò)點(diǎn)(0,--4)的拋物線,由條件得 即 ∴--2≤a≤2. 所以a的取值范圍為[--2,2]. (四)、課堂小結(jié):1、函數(shù)在閉區(qū)間上的最值點(diǎn)必在下列各種點(diǎn)之中:導(dǎo)數(shù)等于零的點(diǎn),導(dǎo)數(shù)不存在的點(diǎn),區(qū)間端點(diǎn); 2、函數(shù)在閉區(qū)間上連續(xù),是在閉區(qū)間上有最大值與最小值的充分條件而非必要條件; 3、閉區(qū)間上的連續(xù)函數(shù)一定有最值;開區(qū)間內(nèi)的可導(dǎo)函數(shù)不一定有最值,若有唯一的極值,則此極值必是函數(shù)的最值 4、利用導(dǎo)數(shù)求函數(shù)的最值方法. (五)課后作業(yè):練習(xí)冊(cè)P41中2、4、5、7 五、教學(xué)反思: 第七課時(shí) 導(dǎo)數(shù)的實(shí)際應(yīng)用(一) 一、教學(xué)目標(biāo):1、知識(shí)與技能:⑴讓學(xué)生掌握在實(shí)際生活中問(wèn)題的求解方法;⑵會(huì)利用導(dǎo)數(shù)求解最值。2、過(guò)程與方法:通過(guò)分析具體實(shí)例,經(jīng)歷由實(shí)際問(wèn)題抽象為數(shù)學(xué)問(wèn)題的過(guò)程。3、情感、態(tài)度與價(jià)值觀:讓學(xué)生感悟由具體到抽象,由特殊到一般的思想方法 二、教學(xué)重點(diǎn):函數(shù)建模過(guò)程 教學(xué)難點(diǎn):函數(shù)建模過(guò)程 三、教學(xué)方法:探究歸納,講練結(jié)合 四、教學(xué)過(guò)程 (一)、復(fù)習(xí):利用導(dǎo)數(shù)求函數(shù)極值和最值的方法 (二)、探究新課 例1、在邊長(zhǎng)為60 cm的正方形鐵片的四角切去相等的正方形,再把它的邊沿虛線折起(如圖),做成一個(gè)無(wú)蓋的方底箱子,箱底的邊長(zhǎng)是多少時(shí),箱底的容積最大?最大容積是多少? 解法一:設(shè)箱底邊長(zhǎng)為xcm,則箱高cm,得箱子容積 . 令 =0,解得 x=0(舍去),x=40, 并求得 V(40)=16 000 由題意可知,當(dāng)x過(guò)小(接近0)或過(guò)大(接近60)時(shí),箱子容積很小,因此,16 000是最大值答:當(dāng)x=40cm時(shí),箱子容積最大,最大容積是16 000cm3 解法二:設(shè)箱高為xcm,則箱底長(zhǎng)為(60-2x)cm,則得箱子容積 .(后面同解法一,略) 由題意可知,當(dāng)x過(guò)小或過(guò)大時(shí)箱子容積很小,所以最大值出現(xiàn)在極值點(diǎn)處.事實(shí)上,可導(dǎo)函數(shù)、在各自的定義域中都只有一個(gè)極值點(diǎn),從圖象角度理解即只有一個(gè)波峰,是單峰的,因而這個(gè)極值點(diǎn)就是最值點(diǎn),不必考慮端點(diǎn)的函數(shù)值 例2、圓柱形金屬飲料罐的容積一定時(shí),它的高與底與半徑應(yīng)怎樣選取,才能使所用的材料最??? 解:設(shè)圓柱的高為h,底半徑為R,則表面積 S=2πRh+2πR2 由V=πR2h,得,則 S(R)= 2πR+ 2πR2=+2πR2 令 +4πR=0 解得,R=,從而h====2 即h=2R因?yàn)镾(R)只有一個(gè)極值,所以它是最小值答:當(dāng)罐的高與底直徑相等時(shí),所用材料最省 變式:當(dāng)圓柱形金屬飲料罐的表面積為定值S時(shí),它的高與底面半徑應(yīng)怎樣選取,才能使所用材料最??? 提示:S=2+h= V(R)=R= )=0 . 例3、已知某商品生產(chǎn)成本C與產(chǎn)量q的函數(shù)關(guān)系式為C=100+4q,價(jià)格p與產(chǎn)量q的函數(shù)關(guān)系式為.求產(chǎn)量q為何值時(shí),利潤(rùn)L最大? 分析:利潤(rùn)L等于收入R減去成本C,而收入R等于產(chǎn)量乘價(jià)格.由此可得出利潤(rùn)L與產(chǎn)量q的函數(shù)關(guān)系式,再用導(dǎo)數(shù)求最大利潤(rùn). 解:收入, 利潤(rùn) 令,即,求得唯一的極值點(diǎn)答:產(chǎn)量為84時(shí),利潤(rùn)L最大 (三)、小結(jié):本節(jié)課學(xué)習(xí)了導(dǎo)數(shù)在解決實(shí)際問(wèn)題中的應(yīng)用. (四)、課堂練習(xí):第69頁(yè)練習(xí)題 (五)、課后作業(yè):第69頁(yè)A組中1、3 B組題。 五、教后反思: 第八課時(shí) 導(dǎo)數(shù)的實(shí)際應(yīng)用(二) 一、教學(xué)目標(biāo):1、使利潤(rùn)最大、用料最省、效率最高等優(yōu)化問(wèn)題,體會(huì)導(dǎo)數(shù)在解決實(shí)際問(wèn)題中的作用;2、提高將實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題的能力。 二、教學(xué)重點(diǎn):利用導(dǎo)數(shù)解決生活中的一些優(yōu)化問(wèn)題. 教學(xué)難點(diǎn):利用導(dǎo)數(shù)解決生活中的一些優(yōu)化問(wèn)題. 三、教學(xué)方法:探究歸納,講練結(jié)合 四、教學(xué)過(guò)程: (一).創(chuàng)設(shè)情景 生活中經(jīng)常遇到求利潤(rùn)最大、用料最省、效率最高等問(wèn)題,這些問(wèn)題通常稱為優(yōu)化問(wèn)題.通過(guò)前面的學(xué)習(xí),我們知道,導(dǎo)數(shù)是求函數(shù)最大(?。┲档挠辛ぞ撸@一節(jié),我們利用導(dǎo)數(shù),解決一些生活中的優(yōu)化問(wèn)題. (二).新課探究 導(dǎo)數(shù)在實(shí)際生活中的應(yīng)用主要是解決有關(guān)函數(shù)最大值、最小值的實(shí)際問(wèn)題,主要有以下幾個(gè)方面: 1、與幾何有關(guān)的最值問(wèn)題;2、與物理學(xué)有關(guān)的最值問(wèn)題;3、與利潤(rùn)及其成本有關(guān)的最值問(wèn)題; 4、效率最值問(wèn)題。 解決優(yōu)化問(wèn)題的方法:首先是需要分析問(wèn)題中各個(gè)變量之間的關(guān)系,建立適當(dāng)?shù)暮瘮?shù)關(guān)系,并確定函數(shù)的定義域,通過(guò)創(chuàng)造在閉區(qū)間內(nèi)求函數(shù)取值的情境,即核心問(wèn)題是建立適當(dāng)?shù)暮瘮?shù)關(guān)系。再通過(guò)研究相應(yīng)函數(shù)的性質(zhì),提出優(yōu)化方案,使問(wèn)題得以解決,在這個(gè)過(guò)程中,導(dǎo)數(shù)是一個(gè)有力的工具. 利用導(dǎo)數(shù)解決優(yōu)化問(wèn)題的基本思路: 建立數(shù)學(xué)模型 解決數(shù)學(xué)模型 作答 用函數(shù)表示的數(shù)學(xué)問(wèn)題 優(yōu)化問(wèn)題 用導(dǎo)數(shù)解決數(shù)學(xué)問(wèn)題 優(yōu)化問(wèn)題的答案 (三).典例分析 例1、海報(bào)版面尺寸的設(shè)計(jì) 學(xué)?;虬嗉?jí)舉行活動(dòng),通常需要張貼海報(bào)進(jìn)行宣傳?,F(xiàn)讓你設(shè)計(jì)一張如圖1.4-1所示的豎向張貼的海報(bào),要求版心面積為128dm2,上、下兩邊各空2dm,左、右兩邊各空1dm。如何設(shè)計(jì)海報(bào)的尺寸,才能使四周空心面積最?。? 解:設(shè)版心的高為xdm,則版心的寬為dm,此時(shí)四周空白面積為 。 求導(dǎo)數(shù),得 。 令,解得舍去)。 于是寬為。 當(dāng)時(shí),<0;當(dāng)時(shí),>0. 因此,是函數(shù)的極小值,也是最小值點(diǎn)。所以,當(dāng)版心高為16dm,寬為8dm時(shí),能使四周空白面積最小。 答:當(dāng)版心高為16dm,寬為8dm時(shí),海報(bào)四周空白面積最小。 例2、飲料瓶大小對(duì)飲料公司利潤(rùn)的影響 (1)你是否注意過(guò),市場(chǎng)上等量的小包裝的物品一般比大包裝的要貴些?(2)是不是飲料瓶越大,飲料公司的利潤(rùn)越大? 【背景知識(shí)】:某制造商制造并出售球型瓶裝的某種飲料.瓶子的制造成本是 分,其中 是瓶子的半徑,單位是厘米。已知每出售1 mL的飲料,制造商可獲利 0.2 分,且制造商能制作的瓶子的最大半徑為 6cm 問(wèn)題:(1)瓶子的半徑多大時(shí),能使每瓶飲料的利潤(rùn)最大?(2)瓶子的半徑多大時(shí),每瓶的利潤(rùn)最?。? 解:由于瓶子的半徑為,所以每瓶飲料的利潤(rùn)是 令 解得 (舍去) 當(dāng)時(shí),;當(dāng)時(shí),. 當(dāng)半徑時(shí),它表示單調(diào)遞增,即半徑越大,利潤(rùn)越高; 當(dāng)半徑時(shí), 它表示單調(diào)遞減,即半徑越大,利潤(rùn)越低. (1)半徑為cm 時(shí),利潤(rùn)最小,這時(shí),表示此種瓶?jī)?nèi)飲料的利潤(rùn)還不夠瓶子的成本,此時(shí)利潤(rùn)是負(fù)值. (2)半徑為cm時(shí),利潤(rùn)最大. 換一個(gè)角度:如果我們不用導(dǎo)數(shù)工具,直接從函數(shù)的圖像上觀察,會(huì)有什么發(fā)現(xiàn)? 有圖像知:當(dāng)時(shí),,即瓶子的半徑為3cm時(shí),飲料的利潤(rùn)與飲料瓶的成本恰好相等;當(dāng)時(shí),利潤(rùn)才為正值. 當(dāng)時(shí),,為減函數(shù),其實(shí)際意義為:瓶子的半徑小于2cm時(shí),瓶子的半徑越大,利潤(rùn)越小,半徑為cm 時(shí),利潤(rùn)最?。? (四).課堂練習(xí) 1.用總長(zhǎng)為14.8m的鋼條制作一個(gè)長(zhǎng)方體容器的框架,如果所制作的容器的底面的一邊比另一邊長(zhǎng)0.5m,那么高為多少時(shí)容器的容積最大?并求出它的最大容積.(高為1.2 m,最大容積) 2.課本P65 練習(xí)題 (五).回顧總結(jié)建立數(shù)學(xué)模型 :1.利用導(dǎo)數(shù)解決優(yōu)化問(wèn)題的基本思路: 解決數(shù)學(xué)模型 作答 用函數(shù)表示的數(shù)學(xué)問(wèn)題 優(yōu)化問(wèn)題 用導(dǎo)數(shù)解決數(shù)學(xué)問(wèn)題 優(yōu)化問(wèn)題的答案 2.解決優(yōu)化問(wèn)題的方法:通過(guò)搜集大量的統(tǒng)計(jì)數(shù)據(jù),建立與其相應(yīng)的數(shù)學(xué)模型,再通過(guò)研究相應(yīng)函數(shù)的性質(zhì),提出優(yōu)化方案,使問(wèn)題得到解決.在這個(gè)過(guò)程中,導(dǎo)數(shù)往往是一個(gè)有利的工具。 (六).布置作業(yè):1、一條水渠,斷面為等腰梯形,如圖所示,在確定斷面尺寸時(shí),希望在斷面ABCD的面積為定值S時(shí),使得濕周l=AB+BC+CD最小,這樣可使水流阻力小,滲透少,求此時(shí)的高h(yuǎn)和下底邊長(zhǎng)b. 解:由梯形面積公式,得S= (AD+BC)h,其中AD=2DE+BC,DE=h,BC=b ∴AD=h+b, ∴S= ① ∵CD=,AB=CD.∴l(xiāng)=2+b ② 由①得b=h,代入②,∴l(xiāng)= l′==0,∴h=, 當(dāng)h<時(shí),l′<0,h>時(shí),l′>0. ∴h=時(shí),l取最小值,此時(shí)b= 2、已知矩形的兩個(gè)頂點(diǎn)位于x軸上,另兩個(gè)頂點(diǎn)位于拋物線y =4-x2在x軸上方的曲線上,求這種矩形中面積最大者的邊長(zhǎng). 【解】設(shè)位于拋物線上的矩形的一個(gè)頂點(diǎn)為(x,y),且x >0,y >0, 則另一個(gè)在拋物線上的頂點(diǎn)為(-x,y),在x軸上的兩個(gè)頂點(diǎn)為(-x,0)、(x,0),其中0< x <2.設(shè)矩形的面積為S,則S =2 x(4-x2),0< x <2.由S′(x)=8-6 x2=0,得x =,易知x =是S在(0,2)上的極值點(diǎn),即是最大值點(diǎn), 所以這種矩形中面積最大者的邊長(zhǎng)為和. 【點(diǎn)評(píng)】應(yīng)用題求解,要正確寫出目標(biāo)函數(shù)并明確題意所給的變量制約條件.應(yīng)用題的分析中如確定有最小值,且極小值唯一,即可確定極小值就是最小值. 五、教后反思: 第九課時(shí) 導(dǎo)數(shù)的實(shí)際應(yīng)用(三) 一、教學(xué)目標(biāo):1、使利潤(rùn)最大、用料最省、效率最高等優(yōu)化問(wèn)題,體會(huì)導(dǎo)數(shù)在解決實(shí)際問(wèn)題中的作用;2、提高將實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題的能力。 二、教學(xué)重點(diǎn):利用導(dǎo)數(shù)解決生活中的一些優(yōu)化問(wèn)題. 教學(xué)難點(diǎn):利用導(dǎo)數(shù)解決生活中的一些優(yōu)化問(wèn)題. 三、教學(xué)方法:探究歸納,講練結(jié)合 四、教學(xué)過(guò)程 (一)、創(chuàng)設(shè)情景 生活中經(jīng)常遇到求利潤(rùn)最大、用料最省、效率最高等問(wèn)題,這些問(wèn)題通常稱為優(yōu)化問(wèn)題.通過(guò)前面的學(xué)習(xí),我們知道,導(dǎo)數(shù)是求函數(shù)最大(?。┲档挠辛ぞ撸@一節(jié),我們利用導(dǎo)數(shù),解決一些生活中的優(yōu)化問(wèn)題. (二)、新課探究 導(dǎo)數(shù)在實(shí)際生活中的應(yīng)用主要是解決有關(guān)函數(shù)最大值、最小值的實(shí)際問(wèn)題,主要有以下幾個(gè)方面: 1、與幾何有關(guān)的最值問(wèn)題;2、與物理學(xué)有關(guān)的最值問(wèn)題;3、與利潤(rùn)及其成本有關(guān)的最值問(wèn)題; 4、效率最值問(wèn)題。 解決優(yōu)化問(wèn)題的方法:首先是需要分析問(wèn)題中各個(gè)變量之間的關(guān)系,建立適當(dāng)?shù)暮瘮?shù)關(guān)系,并確定函數(shù)的定義域,通過(guò)創(chuàng)造在閉區(qū)間內(nèi)求函數(shù)取值的情境,即核心問(wèn)題是建立適當(dāng)?shù)暮瘮?shù)關(guān)系。再通過(guò)研究相應(yīng)函數(shù)的性質(zhì),提出優(yōu)化方案,使問(wèn)題得以解決,在這個(gè)過(guò)程中,導(dǎo)數(shù)是一個(gè)有力的工具. 利用導(dǎo)數(shù)解決優(yōu)化問(wèn)題的基本思路: 建立數(shù)學(xué)模型 解決數(shù)學(xué)模型 作答 用函數(shù)表示的數(shù)學(xué)問(wèn)題 優(yōu)化問(wèn)題 用導(dǎo)數(shù)解決數(shù)學(xué)問(wèn)題 優(yōu)化問(wèn)題的答案 (三)、典例分析 例1、磁盤的最大存儲(chǔ)量問(wèn)題 計(jì)算機(jī)把數(shù)據(jù)存儲(chǔ)在磁盤上。磁盤是帶有磁性介質(zhì)的圓盤,并有操作系統(tǒng)將其格式化成磁道和扇區(qū)。磁道是指不同半徑所構(gòu)成的同心軌道,扇區(qū)是指被同心角分割所成的扇形區(qū)域。磁道上的定長(zhǎng)弧段可作為基本存儲(chǔ)單元,根據(jù)其磁化與否可分別記錄數(shù)據(jù)0或1,這個(gè)基本單元通常被稱為比特(bit)。 為了保障磁盤的分辨率,磁道之間的寬度必需大于,每比特所占用的磁道長(zhǎng)度不得小于。為了數(shù)據(jù)檢索便利,磁盤格式化時(shí)要求所有磁道要具有相同的比特?cái)?shù)。 問(wèn)題:現(xiàn)有一張半徑為的磁盤,它的存儲(chǔ)區(qū)是半徑介于與之間的環(huán)形區(qū)域. (1)是不是越小,磁盤的存儲(chǔ)量越大?(2)為多少時(shí),磁盤具有最大存儲(chǔ)量(最外面的磁道不存儲(chǔ)任何信息)? 解:由題意知:存儲(chǔ)量=磁道數(shù)每磁道的比特?cái)?shù)。 設(shè)存儲(chǔ)區(qū)的半徑介于與R之間,由于磁道之間的寬度必需大于,且最外面的磁道不存儲(chǔ)任何信息,故磁道數(shù)最多可達(dá)。由于每條磁道上的比特?cái)?shù)相同,為獲得最大存儲(chǔ)量,最內(nèi)一條磁道必須裝滿,即每條磁道上的比特?cái)?shù)可達(dá)。所以,磁盤總存儲(chǔ)量 (1)它是一個(gè)關(guān)于的二次函數(shù),從函數(shù)解析式上可以判斷,不是越小,磁盤的存儲(chǔ)量越大. (2)為求的最大值,計(jì)算. 令,解得當(dāng)時(shí),;當(dāng)時(shí),. 因此時(shí),磁盤具有最大存儲(chǔ)量。此時(shí)最大存儲(chǔ)量為 例2、汽油的使用效率何時(shí)最高 我們知道,汽油的消耗量(單位:L)與汽車的速度(單位:km/h)之間有一定的關(guān)系,汽油的消耗量是汽車速度的函數(shù).根據(jù)你的生活經(jīng)驗(yàn),思考下面兩個(gè)問(wèn)題: (1)是不是汽車的速度越快,汽車的消耗量越大?(2)“汽油的使用率最高”的含義是什么? 分析:研究汽油的使用效率(單位:L/m)就是研究秋游消耗量與汽車行駛路程的比值.如果用表示每千米平均的汽油消耗量,那么,其中,表示汽油消耗量(單位:L),表示汽油行駛的路程(單位:km).這樣,求“每千米路程的汽油消耗量最少”,就是求的最小值的問(wèn)題. 通過(guò)大量的統(tǒng)計(jì)數(shù)據(jù),并對(duì)數(shù)據(jù)進(jìn)行分析、研究,人們發(fā)現(xiàn),汽車在行駛過(guò)程中,汽油平均消耗率(即每小時(shí)的汽油消耗量,單位:L/h)與汽車行駛的平均速度(單位:km/h)之間有如圖所示的函數(shù)關(guān)系. 從圖中不能直接解決汽油使用效率最高的問(wèn)題.因此,我們首先需要將問(wèn)題轉(zhuǎn)化為汽油平均消耗率(即每小時(shí)的汽油消耗量,單位:L/h)與汽車行駛的平均速度(單位:km/h)之間關(guān)系的問(wèn)題,然后利用圖像中的數(shù)據(jù)信息,解決汽油使用效率最高的問(wèn)題. 解:因?yàn)? 這樣,問(wèn)題就轉(zhuǎn)化為求的最小值.從圖象上看,表示經(jīng)過(guò)原點(diǎn)與曲線上點(diǎn)的直線的斜率.進(jìn)一步發(fā)現(xiàn),當(dāng)直線與曲線相切時(shí),其斜率最?。诖饲悬c(diǎn)處速度約為90. 因此,當(dāng)汽車行駛距離一定時(shí),要使汽油的使用效率最高,即每千米的汽油消耗量最小,此時(shí)的車速約為90.從數(shù)值上看,每千米的耗油量就是圖中切線的斜率,即,約為 L. 例3、在經(jīng)濟(jì)學(xué)中,生產(chǎn)x單位產(chǎn)品的成本稱為成本函數(shù)同,記為C(x),出售x單位產(chǎn)品的收益稱為收益函數(shù),記為R(x),R(x)-C(x)稱為利潤(rùn)函數(shù),記為P(x)。 (1)、如果C(x)=,那么生產(chǎn)多少單位產(chǎn)品時(shí),邊際最低?(邊際成本:生產(chǎn)規(guī)模增加一個(gè)單位時(shí)成本的增加量) (2)、如果C(x)=50x+10000,產(chǎn)品的單價(jià)P=100-0.01x,那么怎樣定價(jià),可使利潤(rùn)最大? 變式:已知某商品生產(chǎn)成本C與產(chǎn)量q的函數(shù)關(guān)系式為C=100+4q,價(jià)格p與產(chǎn)量q的函數(shù)關(guān)系式為.求產(chǎn)量q為何值時(shí),利潤(rùn)L最大? 分析:利潤(rùn)L等于收入R減去成本C,而收入R等于產(chǎn)量乘價(jià)格.由此可得出利潤(rùn)L與產(chǎn)量q的函數(shù)關(guān)系式,再用導(dǎo)數(shù)求最大利潤(rùn). 解:收入, 利潤(rùn) 令,即,求得唯一的極值點(diǎn) 答:產(chǎn)量為84時(shí),利潤(rùn)L最大 (四)、課堂練習(xí):在甲、乙兩個(gè)工廠,甲廠位于一直線河岸的岸邊A處,乙廠與甲廠在河的同側(cè),乙廠位于離河岸40 km的B處,乙廠到河岸的垂足D與A相距50 km,兩廠要在此岸邊合建一個(gè)供水站C,從供水站到甲廠和乙廠的水管費(fèi)用分別為每千米3a元和5a元,問(wèn)供水站C建在岸邊何處才能使水管費(fèi)用最?。? 解析 根據(jù)題意知,只有點(diǎn)C在線段AD上某一適當(dāng)位置,才能使總運(yùn)費(fèi)最省,設(shè)C點(diǎn)距D點(diǎn)x km,則∵BD=40,AC=50-x, ∴BC= 又設(shè)總的水管費(fèi)用為y元,依題意有 y=30(5a-x)+5a (0<x<50) y′=-3a+,令y′=0,解得x=30在(0,50)上,y只有一個(gè)極值點(diǎn),根據(jù)實(shí)際問(wèn)題的意義, 函數(shù)在x=30(km)處取得最小值,此時(shí)AC=50-x=20(km)∴供水站建在A、D之間距甲廠20 km處,可使水管費(fèi)用最省 (五).回顧總結(jié)建立數(shù)學(xué)模型 :1.利用導(dǎo)數(shù)解決優(yōu)化問(wèn)題的基本思路: 解決數(shù)學(xué)模型 作答 用函數(shù)表示的數(shù)學(xué)問(wèn)題 優(yōu)化問(wèn)題 用導(dǎo)數(shù)解決數(shù)學(xué)問(wèn)題 優(yōu)化問(wèn)題的答案 2.解決優(yōu)化問(wèn)題的方法:通過(guò)搜集大量的統(tǒng)計(jì)數(shù)據(jù),建立與其相應(yīng)的數(shù)學(xué)模型,再通過(guò)研究相應(yīng)函數(shù)的性質(zhì),提出優(yōu)化方案,使問(wèn)題得到解決.在這個(gè)過(guò)程中,導(dǎo)數(shù)往往是一個(gè)有利的工具。 (六).布置作業(yè):1、一書店預(yù)計(jì)一年內(nèi)要銷售某種書15萬(wàn)冊(cè),欲分幾次訂貨,如果每次訂貨要付手續(xù)費(fèi)30元,每千冊(cè)書存放一年要耗庫(kù)費(fèi)40元,并假設(shè)該書均勻投放市場(chǎng),問(wèn)此書店分幾次進(jìn)貨、每次進(jìn)多少冊(cè),可使所付的手續(xù)費(fèi)與庫(kù)存費(fèi)之和最少? 【解】假設(shè)每次進(jìn)書x千冊(cè),手續(xù)費(fèi)與庫(kù)存費(fèi)之和為y元,由于該書均勻投放市場(chǎng),則平均庫(kù)存量為批量之半,即,故有y =30+40,y′=-+20, 令y′=0,得x =15,且y″=,f″(15)>0,所以當(dāng)x =15時(shí),y取得極小值,且極小值唯一,故 當(dāng)x =15時(shí),y取得最小值,此時(shí)進(jìn)貨次數(shù)為=10(次). 即該書店分10次進(jìn)貨,每次進(jìn)15000冊(cè)書,所付手續(xù)費(fèi)與庫(kù)存費(fèi)之和最少. 2、有甲、乙兩城,甲城位于一直線形河岸,乙城離岸40千米,乙城到岸的垂足與甲城相距50千米,兩城在此河邊合設(shè)一水廠取水,從水廠到甲城和乙城的水管費(fèi)用分別為每千米500元和700元,問(wèn)水廠應(yīng)設(shè)在河邊的何處,才能使水管費(fèi)用最??? 【解】設(shè)水廠D點(diǎn)與乙城到岸的垂足B點(diǎn)之間的距離為x千米,總費(fèi)用為y元, 則CD =.y =500(50-x)+700=25000-500 x +700, y′=-500+700 (x 2+1600) 2 x=-500+,令y′=0,解得x =.答:水廠距甲距離為50-千米時(shí),總費(fèi)用最?。? 【點(diǎn)評(píng)】當(dāng)要求的最大(小)值的變量y與幾個(gè)變量相關(guān)時(shí),我們總是先設(shè)幾個(gè)變量中的一個(gè)為x,然后再根據(jù)條件x來(lái)表示其他變量,并寫出y的函數(shù)表達(dá)式f(x). 五、教后反思: 第十課時(shí) 導(dǎo)數(shù)的綜合應(yīng)用小結(jié)與復(fù)習(xí) 一、教學(xué)目標(biāo):1、知識(shí)與技能:① 利用導(dǎo)數(shù)研究函數(shù)的切線、單調(diào)性、極大(?。┲狄约昂瘮?shù)在連續(xù)區(qū)間[a,b]上的最大(?。┲?;②利用導(dǎo)數(shù)求解一些實(shí)際問(wèn)題的最大值和最小值。 2、過(guò)程與方法:①通過(guò)研究函數(shù)的切線、單調(diào)性、極大(小)值以及函數(shù)在連續(xù)區(qū)間[a,b]上的最大(小)值,培養(yǎng)學(xué)生的數(shù)學(xué)思維能力; ② 通過(guò)求解一些實(shí)際問(wèn)題的最大值和最小值,培養(yǎng)學(xué)生分析問(wèn)題、解決問(wèn)題的能力,以及數(shù)學(xué)建模能力。 3、情感態(tài)度、價(jià)值觀:逐步培養(yǎng)學(xué)生養(yǎng)成運(yùn)用數(shù)形結(jié)合、等價(jià)轉(zhuǎn)化、函數(shù)與方程等數(shù)學(xué)思想方法思考問(wèn)題、解決問(wèn)題的習(xí)慣。 二、教學(xué)重難點(diǎn):通過(guò)研究函數(shù)的切線、單調(diào)性、極大(?。┲狄约昂瘮?shù)在連續(xù)區(qū)間[a,b]上的最大(小)值,培養(yǎng)學(xué)生的數(shù)學(xué)思維能力; 通過(guò)求解一些實(shí)際問(wèn)題的最大值和最小值,培養(yǎng)學(xué)生分析問(wèn)題、解決問(wèn)題的能力,以及數(shù)學(xué)建模能力。 三、教學(xué)方法:探析歸納,講練結(jié)合 四、教學(xué)過(guò)程 (一)、知識(shí)點(diǎn) 1、導(dǎo)數(shù)應(yīng)用的知識(shí)網(wǎng)絡(luò)結(jié)構(gòu)圖: (二)重點(diǎn)導(dǎo)析: 1、本課主要內(nèi)容是小結(jié)導(dǎo)數(shù)和微分在研究函數(shù)性質(zhì)方面的應(yīng)用,即函數(shù)的單調(diào)性、極大(小)值、最大(小)值,以及運(yùn)用導(dǎo)數(shù)和微分來(lái)解決實(shí)際問(wèn)題.其知識(shí)要點(diǎn)如下表所示. 2、對(duì)于函數(shù)單調(diào)性的判定,強(qiáng)調(diào):(1)判別法的依據(jù)是導(dǎo)數(shù)的幾何意義;(2)在(a,b)內(nèi)f′(x)>0(f′(x)<0)是使f(x)在(a,b)內(nèi)遞增或遞減的充分條件而非必要條件,例f(x)=x3在(-∞,+∞)內(nèi)遞增,并不要求在(-∞,+∞)內(nèi)f′(x)>0. 3、關(guān)于極值問(wèn)題,仍然要注意以下問(wèn)題:(1)極值點(diǎn)未必可導(dǎo)點(diǎn);(2)f′(x0)=0時(shí),f(x0)未必是極值;(3)極大值未必大于極小值. 4.關(guān)于函數(shù)的最值:切實(shí)掌握求最值的步驟和方法外,應(yīng)說(shuō)明極值和最值的關(guān)系,以及f(x)在[a,b]內(nèi)連續(xù)是使f(x)在[a,b]內(nèi)有最大值和最小值的充分條件而非必要條件. (三)、例題探析 例1、求函數(shù)y=x4-2x2+5在閉區(qū)間[-2,2]上的極值、最值,討論其在[-2,2]上的各個(gè)單調(diào)區(qū)間.(可叫學(xué)生演板) 例2、已知函數(shù)f(x)=alg(2-ax)(a>0,且a≠1)在定義域[0,1]上是減函數(shù),求a的取值范圍. 分析:因?yàn)閒(x)在[0,1]上是減函數(shù),所以在[0,1]上必有f′(x)<0.由f′(x)<0得不等式,可由不等式求出a的取值范圍. 例3、如圖,兩個(gè)工廠A、B相距0.6km,A、 B距電站C都是0.5 km.計(jì)劃鋪設(shè)動(dòng)力線,先由C沿AB的垂線至D,再與A、B相連.D點(diǎn)選在何處時(shí),動(dòng)力線總長(zhǎng)最短? 分析:據(jù)題意應(yīng)知三角形ADB是等腰三角形,DE是其高線.故可設(shè)DE為x km.由AB=0.6,AC=BC=0.5,得AE=EB=0.3. 動(dòng)力線總長(zhǎng)l 故D點(diǎn)選在距AB 0.17千米處時(shí),動(dòng)力線最短. (四)、課堂練習(xí):復(fù)習(xí)參考題三A組1(1)題、(2)題 (五)、課堂內(nèi)容小結(jié):(1)本節(jié)知識(shí)要點(diǎn);(2)例題涉及的知識(shí)點(diǎn)、難點(diǎn);(3- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 導(dǎo)數(shù)應(yīng)用 2019-2020年高中數(shù)學(xué) 第三章 導(dǎo)數(shù)應(yīng)用教案 北師大版選修2-2 2019 2020 年高 數(shù)學(xué) 第三 導(dǎo)數(shù) 應(yīng)用 教案 北師大 選修
鏈接地址:http://m.appdesigncorp.com/p-2613769.html