2019-2020年高中數(shù)學(xué)《全稱(chēng)量詞與存在量詞》教案2新人教A版選修1-1.doc
《2019-2020年高中數(shù)學(xué)《全稱(chēng)量詞與存在量詞》教案2新人教A版選修1-1.doc》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《2019-2020年高中數(shù)學(xué)《全稱(chēng)量詞與存在量詞》教案2新人教A版選修1-1.doc(4頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學(xué)《全稱(chēng)量詞與存在量詞》教案2新人教A版選修1-1 教學(xué)目標(biāo):利用日常生活中的例子和數(shù)學(xué)的命題介紹對(duì)量詞命題的否定,使學(xué)生進(jìn)一步理解全稱(chēng)量詞、存在量詞的作用. 教學(xué)重點(diǎn):全稱(chēng)量詞與存在量詞命題間的轉(zhuǎn)化; 教學(xué)難點(diǎn):隱蔽性否定命題的確定; 課 型:新授課 教學(xué)手段:多媒體 教學(xué)過(guò)程: 一、創(chuàng)設(shè)情境 數(shù)學(xué)命題中出現(xiàn)“全部”、“所有”、“一切”、“任何”、“任意”、“每一個(gè)”等與“存在著”、“有”、“有些”、“某個(gè)”、“至少有一個(gè)”等的詞語(yǔ),在邏輯中分別稱(chēng)為全稱(chēng)量詞與存在性量詞(用符號(hào)分別記為“ ”與“”來(lái)表示);由這樣的量詞構(gòu)成的命題分別稱(chēng)為全稱(chēng)命題與存在性命題。在全稱(chēng)命題與存在性命題的邏輯關(guān)系中,都容易判斷,但它們的否定形式是我們困惑的癥結(jié)所在。 二、活動(dòng)嘗試 問(wèn)題1:指出下列命題的形式,寫(xiě)出下列命題的否定。 (1)所有的矩形都是平行四邊形; (2)每一個(gè)素?cái)?shù)都是奇數(shù); (3)"xR,x2-2x+1≥0 分析:(1)",否定:存在一個(gè)矩形不是平行四邊形; (2),否定:存在一個(gè)素?cái)?shù)不是奇數(shù); (3),否定:$xR,x2-2x+1<0; 這些命題和它們的否定在形式上有什么變化? 結(jié)論:從命題形式上看,這三個(gè)全稱(chēng)命題的否定都變成了存在性命題. 三、師生探究$ 問(wèn)題2:寫(xiě)出命題的否定 (1)p:$ x∈R,x2+2x+2≤0; (2)p:有的三角形是等邊三角形; (3)p:有些函數(shù)沒(méi)有反函數(shù); (4)p:存在一個(gè)四邊形,它的對(duì)角線(xiàn)互相垂直且平分; 分析:(1)" xR,x2+2x+2>0; (2)任何三角形都不是等邊三角形; (3)任何函數(shù)都有反函數(shù); (4)對(duì)于所有的四邊形,它的對(duì)角線(xiàn)不可能互相垂直或平分; 從集合的運(yùn)算觀點(diǎn)剖析:, 四、數(shù)學(xué)理論 1.全稱(chēng)命題、存在性命題的否定 一般地,全稱(chēng)命題P:" xM,有P(x)成立;其否定命題┓P為:$x∈M,使P(x)不成立。存在性命題P:$xM,使P(x)成立;其否定命題┓P為:" xM,有P(x)不成立。 用符號(hào)語(yǔ)言表示: P:"M, p(x)否定為 P: $M, P(x) P:$M, p(x)否定為 P: "M, P(x) 在具體操作中就是從命題P把全稱(chēng)性的量詞改成存在性的量詞,存在性的量詞改成全稱(chēng)性的量詞,并把量詞作用范圍進(jìn)行否定。即須遵循下面法則:否定全稱(chēng)得存在,否定存在得全稱(chēng),否定肯定得否定,否定否定得肯定. 2.關(guān)鍵量詞的否定 詞語(yǔ) 是 一定是 都是 大于 小于 且 詞語(yǔ)的否定 不是 一定不是 不都是 小于或等于 大于或等于 或 詞語(yǔ) 必有一個(gè) 至少有n個(gè) 至多有一個(gè) 所有x成立 所有x不成立 詞語(yǔ)的否定 一個(gè)也沒(méi)有 至多有n-1個(gè) 至少有兩個(gè) 存在一個(gè)x不成立 存在有一個(gè)成立 五、鞏固運(yùn)用 例1 寫(xiě)出下列全稱(chēng)命題的否定: (1)p:所有人都晨練; (2)p:"xR,x2+x+1>0; (3)p:平行四邊形的對(duì)邊相等; (4)p:$ x∈R,x2-x+1=0; 分析:(1) P:有的人不晨練;(2)$ x∈R,x2+x+1≤0;(3)存在平行四邊形,它的的對(duì)邊不相等;(4)"xR,x2-x+1≠0; 例2 寫(xiě)出下列命題的否定。 (1) 所有自然數(shù)的平方是正數(shù)。 (2) 任何實(shí)數(shù)x都是方程5x-12=0的根。 (3) 對(duì)任意實(shí)數(shù)x,存在實(shí)數(shù)y,使x+y>0. (4) 有些質(zhì)數(shù)是奇數(shù)。 解:(1)的否定:有些自然數(shù)的平方不是正數(shù)。 (2)的否定:存在實(shí)數(shù)x不是方程5x-12=0的根。 (3)的否定:存在實(shí)數(shù)x,對(duì)所有實(shí)數(shù)y,有x+y≤0。 (4)的否定:所有的質(zhì)數(shù)都不是奇數(shù)。 解題中會(huì)遇到省略了“所有,任何,任意”等量詞的簡(jiǎn)化形式,如“若x>3,則x2>9”。在求解中極易誤當(dāng)為簡(jiǎn)單命題處理;這種情形下時(shí)應(yīng)先將命題寫(xiě)成完整形式,再依據(jù)法則來(lái)寫(xiě)出其否定形式。 例3 寫(xiě)出下列命題的否定。 (1) 若x2>4 則x>2.。 (2) 若m≥0,則x2+x-m=0有實(shí)數(shù)根。 (3) 可以被5整除的整數(shù),末位是0。 (4) 被8整除的數(shù)能被4整除。 (5) 若一個(gè)四邊形是正方形,則它的四條邊相等。 解(1)否定:存在實(shí)數(shù),雖然滿(mǎn)足>4,但≤2。或者說(shuō):存在小于或等于2的數(shù),滿(mǎn)足>4。(完整表達(dá)為對(duì)任意的實(shí)數(shù)x, 若x2>4 則x>2) (2)否定:雖然實(shí)數(shù)m≥0,但存在一個(gè),使+ -m=0無(wú)實(shí)數(shù)根。(原意表達(dá):對(duì)任意實(shí)數(shù)m,若m≥0,則x2+x-m=0有實(shí)數(shù)根。) (3)否定:存在一個(gè)可以被5整除的整數(shù),其末位不是0。 (4)否定:存在一個(gè)數(shù)能被8整除,但不能被4整除.(原意表達(dá)為所有能被8整除的數(shù)都能被4整除) (5)否定:存在一個(gè)四邊形,雖然它是正方形,但四條邊中至少有兩條不相等。(原意表達(dá)為無(wú)論哪個(gè)四邊形,若它是正方形,則它的四條邊中任何兩條都相等。) 例4 寫(xiě)出下列命題的非命題與否命題,并判斷其真假性。 (1)p:若x>y,則5x>5y; (2)p:若x2+x﹤2,則x2-x﹤2; (3)p:正方形的四條邊相等; (4)p:已知a,b為實(shí)數(shù),若x2+ax+b≤0有非空實(shí)解集,則a2-4b≥0。 解:(1) P:若 x>y,則5x≤5y; 假命題 否命題:若x≤y,則5x≤5y;真命題 (2) P:若x2+x﹤2,則x2-x≥2;真命題 否命題:若x2+x≥2,則x2-x≥2);假命題。 (3) P:存在一個(gè)四邊形,盡管它是正方形,然而四條邊中至少有兩條邊不相等;假命題。 否命題:若一個(gè)四邊形不是正方形,則它的四條邊不相等。假命題。 (4) P:存在兩個(gè)實(shí)數(shù)a,b,雖然滿(mǎn)足x2+ax+b≤0有非空實(shí)解集,但使a2-4b﹤0。假命題。 否命題:已知a,b為實(shí)數(shù),若x2+ax+b≤0沒(méi)有非空實(shí)解集,則a2-4b﹤0。真命題。 評(píng)注:命題的否定與否命題是完全不同的概念。其理由: 1.任何命題均有否定,無(wú)論是真命題還是假命題;而否命題僅針對(duì)命題“若P則q”提出來(lái)的。2.命題的否定(非)是原命題的矛盾命題,兩者的真假性必然是一真一假,一假一真;而否命題與原命題可能是同真同假,也可能是一真一假。 3. 原命題“若P則q” 的形式,它的非命題“若p,則q”;而它的否命題為 “若┓p,則┓q”,既否定條件又否定結(jié)論。 六、回顧反思 在教學(xué)中,務(wù)必理清各類(lèi)型命題形式結(jié)構(gòu)、性質(zhì)關(guān)系,才能真正準(zhǔn)確地完整地表達(dá)出命題的否定,才能避犯邏輯性錯(cuò)誤,才能更好把邏輯知識(shí)負(fù)載于其它知識(shí)之上,達(dá)到培養(yǎng)和發(fā)展學(xué)生的邏輯思維能力。 七、課后練習(xí) 1.命題p:存在實(shí)數(shù)m,使方程x2+mx+1=0有實(shí)數(shù)根,則“非p”形式的命題是( ) A.存在實(shí)數(shù)m,使得方程x2+mx+1=0無(wú)實(shí)根; B.不存在實(shí)數(shù)m,使得方程x2+mx+1=0有實(shí)根; C.對(duì)任意的實(shí)數(shù)m,使得方程x2+mx+1=0有實(shí)根; D.至多有一個(gè)實(shí)數(shù)m,使得方程x2+mx+1=0有實(shí)根; 2.有這樣一段演繹推理是這樣的“有些有理數(shù)是分?jǐn)?shù),整數(shù)是有理數(shù),則整數(shù)是分?jǐn)?shù)”結(jié)論顯然是錯(cuò)誤的,是因?yàn)椋? ) A.大前提錯(cuò)誤 B.小前提錯(cuò)誤 C.推理形式錯(cuò)誤 D.非以上錯(cuò)誤 3.命題“"xR,x2-x+3>0”的否定是 4.“末位數(shù)字是0或5的整數(shù)能被5整除”的 否定形式是 否命題是 5.寫(xiě)出下列命題的否定,并判斷其真假: (1)p:"m∈R,方程x2+x-m=0必有實(shí)根; (2)q:$R,使得x2+x+1≤0; 6.寫(xiě)出下列命題的“非P”命題,并判斷其真假: (1)若m>1,則方程x2-2x+m=0有實(shí)數(shù)根. (2)平方和為0的兩個(gè)實(shí)數(shù)都為0. (3)若是銳角三角形, 則的任何一個(gè)內(nèi)角是銳角. (4)若abc=0,則a,b,c中至少有一為0. (5)若(x-1)(x-2)=0 ,則x≠1,x≠2. 八、參考答案: 1. B 2.C 3.$ xR,x2-x+3≤0 4.否定形式:末位數(shù)是0或5的整數(shù),不能被5整除 否命題:末位數(shù)不是0且不是5的整數(shù),不能被5整除 5.(1)p:$m∈R,方程x2+x-m=0無(wú)實(shí)根;真命題。 (2)q:"R,使得x2+x+1>0;真命題。 6. ⑴ 若m>1,則方程x2-2x+m=0無(wú)實(shí)數(shù)根,(真); ⑵平方和為0的兩個(gè)實(shí)數(shù)不都為0(假); ⑶若是銳角三角形, 則的任何一個(gè)內(nèi)角不都是銳角(假); ⑷若abc=0,則a,b,c中沒(méi)有一個(gè)為0(假); ⑸若(x-1)(x-2)=0,則 或,(真).- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 全稱(chēng)量詞與存在量詞 2019 2020 年高 數(shù)學(xué) 全稱(chēng) 量詞 存在 教案 新人 選修
鏈接地址:http://m.appdesigncorp.com/p-2599820.html