2019-2020年高三數學第一輪復習第01講 集合教案.doc
《2019-2020年高三數學第一輪復習第01講 集合教案.doc》由會員分享,可在線閱讀,更多相關《2019-2020年高三數學第一輪復習第01講 集合教案.doc(10頁珍藏版)》請在裝配圖網上搜索。
2019-2020年高三數學第一輪復習第01講 集合教案 一.課標要求: 1.集合的含義與表示 (1)通過實例,了解集合的含義,體會元素與集合的“屬于”關系; (2)能選擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題,感受集合語言的意義和作用; 2.集合間的基本關系 (1)理解集合之間包含與相等的含義,能識別給定集合的子集; (2)在具體情境中,了解全集與空集的含義; 3.集合的基本運算 (1)理解兩個集合的并集與交集的含義,會求兩個簡單集合的并集與交集; (2)理解在給定集合中一個子集的補集的含義,會求給定子集的補集; (3)能使用Venn圖表達集合的關系及運算,體會直觀圖示對理解抽象概念的作用。 二.命題走向 有關集合的高考試題,考查重點是集合與集合之間的關系,近年試題加強了對集合的計算化簡的考查,并向無限集發(fā)展,考查抽象思維能力,在解決這些問題時,要注意利用幾何的直觀性,注意運用Venn圖解題方法的訓練,注意利用特殊值法解題,加強集合表示方法的轉換和化簡的訓練??荚囆问蕉嘁砸坏肋x擇題為主,分值5分。 預測xx年高考將繼續(xù)體現本章知識的工具作用,多以小題形式出現,也會滲透在解答題的表達之中,相對獨立。具體題型估計為: (1)題型是1個選擇題或1個填空題; (2)熱點是集合的基本概念、運算和工具作用。 三.要點精講 1.集合:某些指定的對象集在一起成為集合。 (1)集合中的對象稱元素,若a是集合A的元素,記作;若b不是集合A的元素,記作; (2)集合中的元素必須滿足:確定性、互異性與無序性; 確定性:設A是一個給定的集合,x是某一個具體對象,則或者是A的元素,或者不是A的元素,兩種情況必有一種且只有一種成立; 互異性:一個給定集合中的元素,指屬于這個集合的互不相同的個體(對象),因此,同一集合中不應重復出現同一元素; 無序性:集合中不同的元素之間沒有地位差異,集合不同于元素的排列順序無關; (3)表示一個集合可用列舉法、描述法或圖示法; 列舉法:把集合中的元素一一列舉出來,寫在大括號內; 描述法:把集合中的元素的公共屬性描述出來,寫在大括號{}內。 具體方法:在大括號內先寫上表示這個集合元素的一般符號及取值(或變化)范圍,再畫一條豎線,在豎線后寫出這個集合中元素所具有的共同特征。 注意:列舉法與描述法各有優(yōu)點,應該根據具體問題確定采用哪種表示法,要注意,一般集合中元素較多或有無限個元素時,不宜采用列舉法。 (4)常用數集及其記法: 非負整數集(或自然數集),記作N; 正整數集,記作N*或N+; 整數集,記作Z; 有理數集,記作Q; 實數集,記作R。 2.集合的包含關系: (1)集合A的任何一個元素都是集合B的元素,則稱A是B的子集(或B包含A),記作AB(或); 集合相等:構成兩個集合的元素完全一樣。若AB且BA,則稱A等于B,記作A=B;若AB且A≠B,則稱A是B的真子集,記作A B; (2)簡單性質:1)AA;2)A;3)若AB,BC,則AC;4)若集合A是n個元素的集合,則集合A有2n個子集(其中2n-1個真子集); 3.全集與補集: (1)包含了我們所要研究的各個集合的全部元素的集合稱為全集,記作U; (2)若S是一個集合,AS,則,=稱S中子集A的補集; (3)簡單性質:1)()=A;2)S=,=S。 4.交集與并集: (1)一般地,由屬于集合A且屬于集合B的元素所組成的集合,叫做集合A與B的交集。交集。 (2)一般地,由所有屬于集合A或屬于集合B的元素所組成的集合,稱為集合A與B的并集。。 注意:求集合的并、交、補是集合間的基本運算,運算結果仍然還是集合,區(qū)分交集與并集的關鍵是“且”與“或”,在處理有關交集與并集的問題時,常常從這兩個字眼出發(fā)去揭示、挖掘題設條件,結合Venn圖或數軸進而用集合語言表達,增強數形結合的思想方法。 5.集合的簡單性質: (1) (2) (3) (4); (5)(A∩B)=(A)∪(B),(A∪B)=(A)∩(B)。 四.典例解析 題型1:集合的概念 例1.設集合,若,則下列關系正確的是( ) A. B. C. D. 解:由于中只能取到所有的奇數,而中18為偶數。則。選項為D; 點評:該題考察了元素與集合、集合與集合之間的關系。首先應該分清楚元素與集合之間是屬于與不屬于的關系,而集合之間是包含與不包含的關系。 例2.設集合P={m|-1<m≤0,Q={m∈R|mx2+4mx-4<0對任意實數x恒成立,則下列關系中成立的是( ) A.PQ B.QP C.P=Q D.P∩Q=Q 解:Q={m∈R|mx2+4mx-4<0對任意實數x恒成立=,對m分類: ①m=0時,-4<0恒成立; ②m<0時,需Δ=(4m)2-4m(-4)<0,解得m<0。 綜合①②知m≤0, ∴Q={m∈R|m≤0}。 答案為A。 點評:該題考察了集合間的關系,同時考察了分類討論的思想。集合中含有參數m,需要對參數進行分類討論,不能忽略m=0的情況。 題型2:集合的性質 例3.(xx廣東,1)已知集合A={1,2,3,4},那么A的真子集的個數是( ) A.15 B.16 C.3 D.4 解:根據子集的計算應有24-1=15(個)。選項為A; 點評:該題考察集合子集個數公式。注意求真子集時千萬不要忘記空集是任何非空集合的真子集。同時,A不是A的真子集。 變式題:同時滿足條件:①②若,這樣的集合M有多少個,舉出這些集合來。 答案:這樣的集合M有8個。 例4.已知全集,A={1,}如果,則這樣的實數是否存在?若存在,求出,若不存在,說明理由。 解:∵; ∴,即=0,解得 當時,,為A中元素; 當時, 當時, ∴這樣的實數x存在,是或。 另法:∵ ∴, ∴=0且 ∴或。 點評:該題考察了集合間的關系以及集合的性質。分類討論的過程中“當時,”不能滿足集合中元素的互異性。此題的關鍵是理解符號是兩層含義:。 變式題:已知集合,,,求的值。 解:由可知, (1),或(2) 解(1)得, 解(2)得, 又因為當時,與題意不符, 所以,。 題型3:集合的運算 例5.(06全國Ⅱ理,2)已知集合M={x|x<3,N={x|log2x>1},則M∩N=( ) A. B.{x|0<x<3 C.{x|1<x<3 D.{x|2<x<3 解:由對數函數的性質,且2>1,顯然由易得。從而。故選項為D。 點評:該題考察了不等式和集合交運算。 例6.(06安徽理,1)設集合,,則等于( ) A. B. C. D. 解:,,所以,故選B。 點評:該題考察了集合的交、補運算。 題型4:圖解法解集合問題 例7.(xx上海春,5)已知集合A={x||x|≤2,x∈R},B={x|x≥a},且AB,則實數a圖 的取值范圍是____ _。 解:∵A={x|-2≤x≤2},B={x|x≥a},又AB,利用數軸上覆蓋關系:如圖所示,因此有a≤-2。 點評:本題利用數軸解決了集合的概念和集合的關系問題。 例8.(1996全國理,1)已知全集I=N*,集合A={x|x=2n,n∈N*},B={x|x=4n,n∈N},則( ) A.I=A∪B B.I=(A)∪B C.I=A∪(B ) D.I=(A)∪(B) 解:方法一:A中元素是非2的倍數的自然數,B中元素是非4的倍數的自然數,顯然,只有C選項正確. 圖 方法二:因A={2,4,6,8…},B={4,8,12,16,…},所以B={1,2,3,5,6,7,9…},所以I=A∪B,故答案為C. 方法三:因BA,所以()A()B,()A∩(B)=A,故I=A∪(A)=A∪(B)。 方法四:根據題意,我們畫出Venn圖來解,易知BA,如圖:可以清楚看到I=A∪(B)是成立的。 點評:本題考查對集合概念和關系的理解和掌握,注意數形結合的思想方法,用無限集考查,提高了對邏輯思維能力的要求。 題型5:集合的應用 例9.向50名學生調查對A、B兩事件的態(tài)度,有如下結果 贊成A的人數是全體的五分之三,其余的不贊成,贊成B的比贊成A的多3人,其余的不贊成;另外,對A、B都不贊成的學生數比對A、B都贊成的學生數的三分之一多1人。問對A、B都贊成的學生和都不贊成的學生各有多少人? 解:贊成A的人數為50=30,贊成B的人數為30+3=33,如上圖,記50名學生組成的集合為U,贊成事件A的學生全體為集合A;贊成事件B的學生全體為集合B。 設對事件A、B都贊成的學生人數為x,則對A、B都不贊成的學生人數為+1,贊成A而不贊成B的人數為30-x,贊成B而不贊成A的人數為33-x。依題意(30-x)+(33-x)+x+(+1)=50,解得x=21。所以對A、B都贊成的同學有21人,都不贊成的有8人。 點評:在集合問題中,有一些常用的方法如數軸法取交并集,韋恩圖法等,需要考生切實掌握。本題主要強化學生的這種能力。解答本題的閃光點是考生能由題目中的條件,想到用韋恩圖直觀地表示出來。本題難點在于所給的數量關系比較錯綜復雜,一時理不清頭緒,不好找線索。畫出韋恩圖,形象地表示出各數量關系間的聯(lián)系。 例10.求1到200這200個數中既不是2的倍數,又不是3的倍數,也不是5的倍數的自然數共有多少個? 解:如圖先畫出Venn圖,不難看出不符合條件 的數共有(2002)+(2003)+(2005) -(20010)-(2006)-(20015) +(20030)=146 所以,符合條件的數共有200-146=54(個) 點評:分析200個數分為兩類,即滿足題設條件的和不滿足題設條件的兩大類,而不滿足條件的這一類標準明確而簡單,可考慮用扣除法。 題型7:集合綜合題 例11.(xx上海,17)設集合A={x||x-a|<2},B={x|<1},若AB,求實數a的取值范圍。 解:由|x-a|<2,得a-2- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 2019-2020年高三數學第一輪復習第01講 集合教案 2019 2020 年高 數學 第一輪 復習 01 集合 教案
裝配圖網所有資源均是用戶自行上傳分享,僅供網友學習交流,未經上傳用戶書面授權,請勿作他用。
鏈接地址:http://m.appdesigncorp.com/p-2533587.html