2019-2020年高中數(shù)學(xué) 拋物線與圓錐曲線的統(tǒng)一定義知識(shí)精講 理 蘇教版選修2-1.doc
-
資源ID:2526957
資源大?。?span id="kuyapby" class="font-tahoma">88.50KB
全文頁數(shù):6頁
- 資源格式: DOC
下載積分:9.9積分
快捷下載
會(huì)員登錄下載
微信登錄下載
微信掃一掃登錄
友情提示
2、PDF文件下載后,可能會(huì)被瀏覽器默認(rèn)打開,此種情況可以點(diǎn)擊瀏覽器菜單,保存網(wǎng)頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請(qǐng)使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預(yù)覽文檔經(jīng)過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標(biāo)題沒有明確說明有答案則都視為沒有答案,請(qǐng)知曉。
|
2019-2020年高中數(shù)學(xué) 拋物線與圓錐曲線的統(tǒng)一定義知識(shí)精講 理 蘇教版選修2-1.doc
2019-2020 年高中數(shù)學(xué) 拋物線與圓錐曲線的統(tǒng)一定義知識(shí)精講 理 蘇教 版選修 2-1 【本講教育信息】 一. 教學(xué)內(nèi)容: 拋物線與圓錐曲線的統(tǒng)一定義 二、本周教學(xué)目標(biāo): 1、掌握拋物線的標(biāo)準(zhǔn)方程,能根據(jù)已知條件求拋物線的標(biāo)準(zhǔn)方程。 2、掌握拋物線的簡(jiǎn)單的幾何性質(zhì),能根據(jù)拋物線方程解決簡(jiǎn)單的應(yīng)用問題。 3、了解圓錐曲線的統(tǒng)一定義,掌握根據(jù)標(biāo)準(zhǔn)方程求圓錐曲線的準(zhǔn)線方程的方法。 4、了解曲線方程的概念,能根據(jù)曲線方程的概念解決一些簡(jiǎn)單的問題。 三、本周知識(shí)要點(diǎn): (一)拋物線 1、拋物線定義: 平面內(nèi)與一個(gè)定點(diǎn) F 和一條定直線的距離相等的點(diǎn)的軌跡叫做拋物線定點(diǎn) F 叫做拋物 線的焦點(diǎn),定直線叫做拋物線的準(zhǔn)線 圖 形 x yOlyl 方 程 焦 點(diǎn) 準(zhǔn) 線 不同點(diǎn):(1)圖形關(guān)于 x 軸對(duì)稱時(shí),x 為一次項(xiàng),y 為二次項(xiàng),方程右端為、左端為; 圖形關(guān)于 y 軸對(duì)稱時(shí),x 為二次項(xiàng),y 為一次項(xiàng),方程右端為,左端為(2)開口方向在 x 軸(或 y 軸)正向時(shí),焦點(diǎn)在 x 軸(或 y 軸)的正半軸上,方程右端取正號(hào);開口在 x 軸 (或 y 軸)負(fù)向時(shí),焦點(diǎn)在 x 軸(或 y 軸)負(fù)半軸時(shí),方程右端取負(fù)號(hào) 2、拋物線的幾何性質(zhì) (1)范圍 因?yàn)?p0,由方程可知,這條拋物線上的點(diǎn) M 的坐標(biāo)(x,y)滿足不等式 x0,所以 這條拋物線在 y 軸的右側(cè);當(dāng) x 的值增大時(shí),|y|也增大,這說明拋物線向右上方和右下方 無限延伸 (2)對(duì)稱性 以y 代 y,方程不變,所以這條拋物線關(guān)于 x 軸對(duì)稱,我們把拋物線的對(duì)稱軸叫做拋 物線的軸 (3)頂點(diǎn) 拋物線和它的軸的交點(diǎn)叫做拋物線的頂點(diǎn)在方程中,當(dāng) y=0 時(shí),x=0,因此拋物線的 xyOl 頂點(diǎn)就是坐標(biāo)原點(diǎn) (4)離心率 拋物線上的點(diǎn) M 與焦點(diǎn)的距離和它到準(zhǔn)線的距離的比,叫做拋物線的離心率,用 e 表 示由拋物線的定義可知,e=1 (二)圓錐曲線的統(tǒng)一定義 1、橢圓的第二定義:一動(dòng)點(diǎn)到定點(diǎn)的距離和它到一條定直線的距離的比是一個(gè)內(nèi)的常數(shù), 那么這個(gè)點(diǎn)的軌跡叫做橢圓 其中定點(diǎn)叫做焦點(diǎn),定直線叫做準(zhǔn)線,常數(shù)就是離心率 橢圓的準(zhǔn)線方程:橢圓的準(zhǔn)線方程有兩條,這兩條準(zhǔn)線在橢圓外部,與短軸平行,且 關(guān)于短軸對(duì)稱 對(duì)于,左準(zhǔn)線;右準(zhǔn)線 對(duì)于,下準(zhǔn)線;上準(zhǔn)線 K2F2F1N1K1 N2P B2B1 A2A1 xO y K2F 2F 1 N1K1 N2P B2B1A2A1 xO y 2、雙曲線的第二定義:一動(dòng)點(diǎn)到定點(diǎn) F 的距離與到一條定直線的距離之比是一個(gè)內(nèi)的常 數(shù),那么這個(gè)點(diǎn)的軌跡叫做雙曲線 其中定點(diǎn)叫做雙曲線的焦點(diǎn),定直線叫做雙曲線的準(zhǔn) 線常數(shù) e 是雙曲線的離心率 準(zhǔn)線方程: A2A1 F2F1 xOy A2A1F2F1 xOy 對(duì)于來說,相對(duì)于左焦點(diǎn)對(duì)應(yīng)著左準(zhǔn)線,相對(duì)于右焦點(diǎn)對(duì)應(yīng)著右準(zhǔn)線; 對(duì)于來說,相對(duì)于上焦點(diǎn)對(duì)應(yīng)著上準(zhǔn)線;相對(duì)于下焦點(diǎn)對(duì)應(yīng)著下準(zhǔn)線 三、曲線與方程 1、曲線方程 在直角坐標(biāo)系中,如果某曲線 C 上的點(diǎn)的坐標(biāo)都是這個(gè)方程的解且的解為坐標(biāo)的點(diǎn)都 是曲線上的點(diǎn),那么,方程叫做曲線 C 的方程;曲線 C 叫做方程的曲線 2、求簡(jiǎn)單的曲線方程的一般步驟: (1)建立適當(dāng)?shù)淖鴺?biāo)系,用有序?qū)崝?shù)對(duì)表示曲線上任意一點(diǎn) M 的坐標(biāo); (2)寫出適合條件 P 的點(diǎn) M 的集合; (3)用坐標(biāo)表示條件 P( M) ,列出方程; (4)化方程為最簡(jiǎn)形式; (5)證明以化簡(jiǎn)后的方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn) 求簡(jiǎn)單的曲線方程的一般步驟(5)可以省略不寫,如有特殊情況,可以適當(dāng)予以說明 另外,根據(jù)情況,也可以省略步驟(2) ,直接列出曲線方程 【典型例題】 例 1. (1)已知拋物線標(biāo)準(zhǔn)方程是,求它的焦點(diǎn)坐標(biāo)和準(zhǔn)線方程 (2)已知拋物線的焦點(diǎn)坐標(biāo)是 F(0,2) ,求它的標(biāo)準(zhǔn)方程 分析:(1)在標(biāo)準(zhǔn)方程下焦點(diǎn)坐標(biāo)和準(zhǔn)線方程都是用 p 的代數(shù)式表示的,所以只要求 出 p 即可; (2)求的是標(biāo)準(zhǔn)方程,因此所指拋物線應(yīng)過原點(diǎn),結(jié)合焦點(diǎn)坐標(biāo)求出 p,問題易解。 解析:(1) p3,焦點(diǎn)坐標(biāo)是(,0)準(zhǔn)線方程是 x (2)焦點(diǎn)在 y 軸負(fù)半軸上,2, 所以所求拋物線的標(biāo)準(zhǔn)方程是 例 2. 已知拋物線的標(biāo)準(zhǔn)方程是(1) y212 x, (2) y12 x2,求它的焦點(diǎn)坐標(biāo)和準(zhǔn)線方 程 分析:這是關(guān)于拋物線標(biāo)準(zhǔn)方程的基本例題,關(guān)鍵是(1)根據(jù)示意圖確定屬于哪類標(biāo) 準(zhǔn)形式, (2)求出參數(shù) p 的值 解:(1) p6,焦點(diǎn)坐標(biāo)是(3,0) ,準(zhǔn)線方程是 x3 (2)先化為標(biāo)準(zhǔn)方程, ,焦點(diǎn)坐標(biāo)是(0, ) , 準(zhǔn)線方程是 y. 例 3. 求下列橢圓的準(zhǔn)線方程:(1) (2) 解:(1)方程可化為 ,是焦點(diǎn)在軸上且,的橢圓 所以此橢圓的準(zhǔn)線方程為 (2)方程是焦點(diǎn)在軸上且,的橢圓 所以此橢圓的準(zhǔn)線方程為 例 4. 橢圓上有一點(diǎn) P,它到橢圓的左準(zhǔn)線距離為 10,求點(diǎn) P 到橢圓的右焦點(diǎn)的距離 解:橢圓的離心率為,根據(jù)橢圓的第二定義得,點(diǎn) P 到橢圓的左焦點(diǎn)距離為 再根據(jù)橢圓的第一定義得,點(diǎn) P 到橢圓的右焦點(diǎn)的距離為 20812 例 5. 設(shè) A、B 兩點(diǎn)的坐標(biāo)是(1,0) 、 (-1,0) ,若,求動(dòng)點(diǎn) M 的軌跡方程 解:設(shè) M 的坐標(biāo)為,M 屬于集合 P=.由斜率公式,點(diǎn) M 所適合的條件可表示為 , 整理后得 (1) 下面證明 ( x1)是點(diǎn) M 的軌跡方程 (1)由求方程的過程可知, M 的坐標(biāo)都是方程 ( x1)的解; (2)設(shè)點(diǎn)的坐標(biāo)是方程 ( x1)的解,即)1(),1(212xyyx , 由上述證明可知,方程 ( x1)是點(diǎn) M 的軌跡方程 說明:所求的方程后面應(yīng)加上條件 。 例 6. 已知一條曲線在軸的上方,它上面的每一個(gè)點(diǎn)到 A(0,2)的距離減去它到軸的距 離的差都是 2,求這條曲線的方程 分析:這條曲線是到 A 點(diǎn)的距離與其到軸的距離的差是 2 的點(diǎn)的集合或軌跡的一部分。 解:設(shè)點(diǎn)是曲線上任意一點(diǎn), MB軸,垂足是 B,那么點(diǎn) M 屬于集合 P=M MA- MB=2 即 =2 整理得 , 因?yàn)榍€在軸的上方,所以 y0,雖然原點(diǎn) O 的坐標(biāo)(0,0)是這個(gè)方程的解,但不 屬于已知曲線,所以曲線的方程應(yīng)是: (0) 它的圖形是關(guān)于軸對(duì)稱的拋物線,但不包括拋物線的頂點(diǎn) 例 7. 點(diǎn) P(x,y)與定點(diǎn) F2(c,0)的距離與到的距離之比為常數(shù),求 P 的軌跡方程 解:設(shè) d 是點(diǎn) P 到直線的距離根據(jù)題意得 acxy|)(2 化簡(jiǎn),得 () 這是雙曲線的標(biāo)準(zhǔn)方程 【模擬試題】 (答題時(shí)間:40 分鐘) 1. 雙曲線 16x29 y2=144 的實(shí)軸長(zhǎng)、虛軸長(zhǎng)、離心率分別為( ) (A)4, 3, (B)8, 6, (C)8, 6, (D)4, 3, 2. 頂點(diǎn)在 x 軸上,兩頂點(diǎn)間的距離為 8, e=的雙曲線的標(biāo)準(zhǔn)方程為( ) (A) (B) (C) (D) 3. 雙曲線的兩條準(zhǔn)線間的距離等于( ) (A) (B) (C) (D) 4. 拋物線方程為 y ax2( a0) ,則其準(zhǔn)線方程為( ) (A) (B) (C) (D) 5. 線( m0)的焦點(diǎn)坐標(biāo)是( ) (A) (0, )或(0, ) (B) (0, ) (C) (0, )或(0, ) (D) (0, ) 6. 在直線 3x4 y120 上的拋物線標(biāo)準(zhǔn)方程是( ) (A) y216 x 或 x216 y (B) y216 x 或 x212 y (C) x212 y 或 y216 x (D) x216 y 或 y212 x 7. 已知點(diǎn) A(-3,0) , B(0, ) , C(4,-) , D(3sec , tan ) ,其中在曲線上的點(diǎn)的 個(gè)數(shù)為( ) (A)1 (B)2 (C)3 (D)4 8. 求下列橢圓的焦點(diǎn)坐標(biāo)與準(zhǔn)線方程 (1) (2) 9. 根據(jù)下列條件寫出拋物線的標(biāo)準(zhǔn)方程 (1)焦點(diǎn)是 F(2,0) (2)準(zhǔn)線方程是 (3)焦點(diǎn)到準(zhǔn)線的距離是 4,焦點(diǎn)在 y 軸上 (4)經(jīng)過點(diǎn) A(6,2) 10. 求點(diǎn) P 到點(diǎn) F(4,0)的距離比它到直線+5=0 的距離小 1 的點(diǎn)的軌跡方程 11. 已知拋物線關(guān)于 x 軸對(duì)稱,它的頂點(diǎn)在坐標(biāo)原點(diǎn),并且經(jīng)過點(diǎn),求它的標(biāo)準(zhǔn)方程 【試題答案】 1、C 2、A 3、A 4、D 5、B 6、C 7、B 8、答案:(1)焦點(diǎn)坐標(biāo);準(zhǔn)線方程 (2)焦點(diǎn)坐標(biāo);準(zhǔn)線方程 9、 (1) y28 x (2) x2 y (3) x28 y 或 x28 y (4) 或 10、解:設(shè) P 為所求軌跡上任意一點(diǎn), 點(diǎn) P 到 F 的距離比它到直線+5=0 的距離小 1. 故點(diǎn) P 到 F(4,0)的距離與點(diǎn) P 到直線+4=0 的距離 PD相等 PF= PD =-(-4) 11、解:由題意,可設(shè)拋物線方程為,因?yàn)樗^點(diǎn), 所以 ,即 因此,所求的拋物線方程為