2019-2020年高中數(shù)學(xué) 2.4《線性回歸方程》學(xué)案 蘇教版必修3.doc
《2019-2020年高中數(shù)學(xué) 2.4《線性回歸方程》學(xué)案 蘇教版必修3.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019-2020年高中數(shù)學(xué) 2.4《線性回歸方程》學(xué)案 蘇教版必修3.doc(4頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學(xué) 2.4《線性回歸方程》學(xué)案 蘇教版必修3 【目標(biāo)引領(lǐng)】 1. 學(xué)習(xí)目標(biāo): 了解非確定性關(guān)系中兩個(gè)變量的統(tǒng)計(jì)方法;掌握散點(diǎn)圖的畫法及在統(tǒng)計(jì)中的作用,掌握 回歸直線方程的求解方法。 2. 學(xué)法指導(dǎo): ①求回歸直線方程,首先應(yīng)注意到,只有在散點(diǎn)圖大致呈線性時(shí),求出的回歸直線方程才有實(shí)標(biāo)意義.否則,求出的回歸直線方程毫無意義.因此,對一組數(shù)據(jù)作線性回歸分析時(shí),應(yīng)先看其散點(diǎn)圖是否成線性. ②求回歸直線方程,關(guān)鍵在于正確地求出系數(shù)a、b,由于求a、b的計(jì)算量較大,計(jì)算時(shí)仔細(xì)謹(jǐn)慎、分層進(jìn)行,避免因計(jì)算產(chǎn)生失誤. ③回歸直線方程在現(xiàn)實(shí)生活與生產(chǎn)中有廣泛的應(yīng)用.應(yīng)用回歸直線方程可以把非確定性問題轉(zhuǎn)化成確定性問題,把“無序”變?yōu)椤坝行颉?,并對情況進(jìn)行估測、補(bǔ)充.因此,學(xué)過回歸直線方程以后,應(yīng)增強(qiáng)學(xué)生應(yīng)用回歸直線方程解決相關(guān)實(shí)際問題的意識. 【教師在線】 1. 解析視屏: 1.相關(guān)關(guān)系的概念 在實(shí)際問題中,變量之間的常見關(guān)系有兩類: 一類是確定性函數(shù)關(guān)系,變量之間的關(guān)系可以用函數(shù)表示。例如正方形的面積S與其邊長之間的函數(shù)關(guān)系(確定關(guān)系); 一類是相關(guān)關(guān)系,變量之間有一定的聯(lián)系,但不能完全用函數(shù)來表達(dá)。例如一塊農(nóng)田的水稻產(chǎn)量與施肥量的關(guān)系(非確定關(guān)系) 相關(guān)關(guān)系:自變量取值一定時(shí),因變量的取值帶有一定隨機(jī)性的兩個(gè)變量之間的關(guān)系叫做相關(guān)關(guān)系。 相關(guān)關(guān)系與函數(shù)關(guān)系的異同點(diǎn): 相同點(diǎn):均是指兩個(gè)變量的關(guān)系。 不同點(diǎn):函數(shù)關(guān)系是一種確定關(guān)系;而相關(guān)關(guān)系是一種非確定關(guān)系;函數(shù)關(guān)系是自變量與因變量之間的關(guān)系,這種關(guān)系是兩個(gè)非隨機(jī)變量的關(guān)系;而相關(guān)關(guān)系是非隨機(jī)變量與隨機(jī)變量的關(guān)系。 2.求回歸直線方程的思想方法 觀察散點(diǎn)圖的特征,發(fā)現(xiàn)各點(diǎn)大致分布在一條直線的附近,思考:類似圖中的直線可畫幾條? 引導(dǎo)學(xué)生分析,最能代表變量x與y之間關(guān)系的直線的特征:即n個(gè)偏差的平方和最小,其過程簡要分析如下: 設(shè)所求的直線方程為,其中a、b是待定系數(shù)。 則,于是得到各個(gè)偏差。 顯見,偏差的符號有正負(fù),若將它們相加會(huì)造成相互抵消,所以它們的和不能代表幾個(gè)點(diǎn)與相應(yīng)直線在整體上的接近程度,故采用n個(gè)偏差的平方和 表示n個(gè)點(diǎn)與相應(yīng)直線在整體上的接近程度。 記。 上述式子展開后,是一個(gè)關(guān)于a,b的二次多項(xiàng)式,應(yīng)用配方法,可求出使Q為最小值時(shí)的a,b的值,即 其中 以上方法稱為最小二乘法。 2. 經(jīng)典回放: 例1:下列各組變量哪個(gè)是函數(shù)關(guān)系,哪個(gè)是相關(guān)關(guān)系? (1)電壓U與電流I (2)圓面積S與半徑R (3)自由落體運(yùn)動(dòng)中位移s與時(shí)間t (4)糧食產(chǎn)量與施肥量 (5)人的身高與體重 (6)廣告費(fèi)支出與商品銷售額 分析:函數(shù)關(guān)系是一種確定關(guān)系;而相關(guān)關(guān)系是一種非確定關(guān)系;函數(shù)關(guān)系是自變量與因變量之間的關(guān)系,這種關(guān)系是兩個(gè)非隨機(jī)變量的關(guān)系;而相關(guān)關(guān)系是非隨機(jī)變量與隨機(jī)變量的關(guān)系。 解:前三小題中一個(gè)變量的變化可以確定另一個(gè)變量的變化,兩者之間是函數(shù)關(guān)系。 對于糧食與施肥量,兩者確實(shí)有非常密切的關(guān)系,實(shí)踐證明,在一定的范圍內(nèi),施肥量越多,糧食產(chǎn)量就越高,但是,施肥量并不能完全確定糧食產(chǎn)量,因?yàn)榧Z食產(chǎn)量還與其他因素的影響有關(guān),如降雨量、田間管理水平等。因此,糧食與施肥量之間不存在確定的函數(shù)關(guān)系。 人的身高與人的體重也密切相關(guān),一般來說,一個(gè)人的身高越高,體重也越重,但同樣身高的人,其體重不一定相同,身高和體重這兩個(gè)變量之間并不是嚴(yán)格的函數(shù)關(guān)系。 廣告費(fèi)支出與商品銷售額有密切的關(guān)系,但廣告費(fèi)的支出不能完全決定商品的銷售額。由此可見,后三小題各對變量之間的關(guān)系是相關(guān)關(guān)系。 點(diǎn)評:不要認(rèn)為兩個(gè)變量間除了函數(shù)關(guān)系,就是相關(guān)關(guān)系,事實(shí)是上,兩個(gè)變量間可能毫無關(guān)系。比如地球運(yùn)行的速度與某個(gè)人的行走速度就可認(rèn)為沒有關(guān)系。 例2:已知10只狗的血球體積及紅血球的測量值如下: x 45 42 46 48 42 35 58 40 39 50 y 6.53 6.30 9.25 7.50 6.99 5.90 9.49 6.20 6.55 7.72 x(血球體積,mm),y(血紅球數(shù),百萬) (1)畫出上表的散點(diǎn)圖;(2)求出回歸直線并且畫出圖形。 解:(1)見下圖 (2) 設(shè)回歸直線為, 則, 所以所求回歸直線的方程為,圖形如下: 點(diǎn)評:對一組數(shù)據(jù)進(jìn)行線性回歸分析時(shí),應(yīng)先畫出其散點(diǎn)圖,看其是否呈直線形,再依系數(shù)a、b的計(jì)算公式,算出a、b.由于計(jì)算量較大,所以在計(jì)算時(shí)應(yīng)借助技術(shù)手段,認(rèn)真細(xì)致,謹(jǐn)防計(jì)算中產(chǎn)生錯(cuò)誤.求線性回歸方程的步驟:計(jì)算平均數(shù);計(jì)算的積,求;計(jì)算;將結(jié)果代入公式求a;用 求b;寫出回歸方程。 【同步訓(xùn)練】 1 . 下列兩個(gè)變量之間的關(guān)系哪個(gè)不是函數(shù)關(guān)系( ?。? A.角度和它的余弦值 B.正方形邊長和面積 C.正n邊形的邊數(shù)和它的內(nèi)角和 D.人的年齡和身高 2.某市紡織工人的月工資(元)依勞動(dòng)生產(chǎn)率(千元)變化的回歸方程為y=50+80x,則下列說法中正確的是 ( ) A.勞動(dòng)生產(chǎn)率為1000元時(shí),月工資為130元 B.勞動(dòng)生產(chǎn)率提高1000元時(shí),月工資提高約為130元 C.勞動(dòng)生產(chǎn)率提高1000元時(shí),月工資提高約為80元 D.月工資為210元時(shí),勞動(dòng)生產(chǎn)率為xx元 3.設(shè)有一個(gè)回歸方程為y=2-1.5x,則變量x每增加一個(gè)單位時(shí),y平均 ( ) A.增加1.5單位 B.增加2單位 C.減少1.5單位 D.減少2單位 4.正常情況下,年齡在18歲到38歲的人們,體重y(kg)依身高x(cm)的回歸方程為y=0.72x-58.5。張紅紅同學(xué)不胖不瘦,身高1米78,他的體重應(yīng)在 kg左右。 5.給出施化肥量對水稻產(chǎn)量影響的試驗(yàn)數(shù)據(jù): 施化肥量x 15 20 25 30 35 40 45 水稻產(chǎn)量y 330 345 365 405 445 450 455 (1)畫出上表的散點(diǎn)圖;(2)求出回歸直線并且畫出圖形 【拓展嘗新】 6.在某種產(chǎn)品表面進(jìn)行腐蝕線試驗(yàn),得到腐蝕深度y與腐蝕時(shí)間x之間對應(yīng)的一組數(shù)據(jù): 時(shí)間t(s) 5 10 15 20 30 40 50 60 70 90 120 深度y(μm) 6 10 10 13 16 17 19 23 25 29 46 (1)畫出散點(diǎn)圖; (2)試求腐蝕深度y對時(shí)間t的回歸直線方程。 【解答】 1. D 2.C 3.C 4.69.66 5.解:(1)散點(diǎn)圖(略). (2)表中的數(shù)據(jù)進(jìn)行具體計(jì)算,列成以下表格 i 1 2 3 4 5 6 7 xi 15 20 25 30 35 40 45 yi 330 345 365 405 445 450 455 xiyi 4950 6900 9125 12150 15575 18000 20475 , 故可得到。 6.解:(1)散點(diǎn)圖略,呈直線形. (2)經(jīng)計(jì)算可得: 故所求的回歸直線方程為。- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 線性回歸方程 2019-2020年高中數(shù)學(xué) 2.4線性回歸方程學(xué)案 蘇教版必修3 2019 2020 年高 數(shù)學(xué) 2.4 線性 回歸 方程 蘇教版 必修
鏈接地址:http://m.appdesigncorp.com/p-2499371.html