2019-2020年高考數(shù)學 第十一篇 第4講 古典概型限時訓練 新人教A版.doc
《2019-2020年高考數(shù)學 第十一篇 第4講 古典概型限時訓練 新人教A版.doc》由會員分享,可在線閱讀,更多相關《2019-2020年高考數(shù)學 第十一篇 第4講 古典概型限時訓練 新人教A版.doc(6頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年高考數(shù)學 第十一篇 第4講 古典概型限時訓練 新人教A版 一、選擇題(每小題5分,共20分) 1.(xx北京海淀期末)一對年輕夫婦和其兩歲的孩子做游戲,讓孩子把分別寫有“1”“3”“1”“4”的四張卡片隨機排成一行,若卡片按從左到右的順序排成“1314”,則孩子會得到父母的獎勵,那么孩子受到獎勵的概率為 ( ). A. B. C. D. 解析 由題意知,基本事件有=12個,滿足條件的基本事件就一個,故所求概率為P=. 答案 A 2.(xx皖南八校聯(lián)考)一個袋子中有5個大小相同的球,其中有3個黑球與2個紅球,如果從中任取兩個球,則恰好取到兩個同色球的概率是 ( ). A. B. C. D. 解析 基本事件有C=10個,其中為同色球的有C+C=4個,故所求概率為=. 答案 C 3.(xx福州一模)甲、乙兩人各寫一張賀年卡,隨意送給丙、丁兩人中的一人,則甲、乙將賀年卡送給同一人的概率是 ( ). A. B. C. D. 解析 (甲送給丙,乙送給丁),(甲送給丁,乙送給丙),(甲、乙都送給丙),(甲、乙都送給丁),共四種情況,其中甲、乙將賀年卡送給同一人的情況有兩種,所以P==. 答案 A 4.在一次班級聚會上,某班到會的女同學比男同學多6人,從這些同學中隨機挑選一人表演節(jié)目.若選到女同學的概率為,則這班參加聚會的同學的人數(shù)為 ( ). A.12 B.18 C.24 D.32 解析 設女同學有x人,則該班到會的共有(2x-6)人,所以=,得x=12,故該班參加聚會的同學有18人,故選B. 答案 B 二、填空題(每小題5分,共10分) 5.(xx南京模擬)在集合A={2,3}中隨機取一個元素m,在集合B={1,2,3}中隨機取一個元素n,得到點P(m,n),則點P在圓x2+y2=9內部的概率為________. 解析 由題意得到的P(m,n)有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),共6個,在圓x2+y2=9的內部的點有(2,1),(2,2),所以概率為=. 答案 6.(xx鄭州二檢)連擲兩次骰子得到的點數(shù)分別為m和n,記向量a=(m,n)與向量b=(1,-1)的夾角為θ,則θ∈的概率是________. 解析 ∵m,n均為不大于6的正整數(shù),∴當點A(m,n)位于直線y=x上及其下方第一象限的部分時,滿足θ∈的點A(m,n)有6+5+4+3+2+1=21個,點A(m,n)的基本事件總數(shù)為66=36,故所求概率為=. 答案 三、解答題(共25分) 7.(12分)(xx天津)某地區(qū)有小學21所,中學14所,大學7所,現(xiàn)采用分層抽樣的方法從這些學校中抽取6所學校對學生進行視力調查. (1)求應從小學、中學、大學中分別抽取的學校數(shù)目; (2)若從抽取的6所學校中隨機抽取2所學校做進一步數(shù)據(jù)分析, ①列出所有可能的抽取結果; ②求抽取的2所學校均為小學的概率. 解 (1)由分層抽樣的定義知,從小學中抽取的學校數(shù)目為6=3;從中學中抽取的學校數(shù)目為6=2;從大學中抽取的學校數(shù)目為6=1.故從小學、中學、大學中分別抽取的學校數(shù)目為3,2,1. (2)①在抽取到的6所學校中,3所小學分別記為A1,A2,A3,2所中學分別記為A4,A5,1所大學記為A6,則抽取2所學校的所有可能結果為(A1,A2),(A1,A3),(A1,A4),(A1,A5),(A1,A6),(A2,A3),(A2,A4),(A2,A5),(A2,A6),(A3,A4),(A3,A5),(A3,A6),(A4,A5),(A4,A6),(A5,A6),共15種. ②從6所學校中抽取的2所學校均為小學(記為事件B)的所有可能結果為(A1,A2),(A1,A3),(A2,A3),共3種. 所以P(B)==. 8.(13分)(xx廣東)在某次測驗中,有6位同學的平均成績?yōu)?5分.用xn表示編號為n(n=1,2,…,6)的同學所得成績,且前5位同學的成績如下: 編號n 1 2 3 4 5 成績xn 70 76 72 70 72 (2)從前5位同學中,隨機地選2位同學,求恰有1位同學成績在區(qū)間(68,75)中的概率. 解 (1)∵這6位同學的平均成績?yōu)?5分, ∴(70+76+72+70+72+x6)=75,解得x6=90, 這6位同學成績的方差 s2=[(70-75)2+(76-75)2+(72-75)2+(70-75)2+(72-75)2+(90-75)2]=49,∴標準差s=7. (2)從前5位同學中,隨機地選出2位同學的成績共有C=10種, 恰有1位同學成績在區(qū)間(68,75)中的有:(70,76),(76,72),(76,70),(76,72),共4種,所求的概率為=0.4, 即恰有1位同學成績在區(qū)間(68,75)中的概率為0.4. B級 能力突破(時間:30分鐘 滿分:45分) 一、選擇題(每小題5分,共10分) 1.甲、乙兩人喊拳,每人可以用手出0,5,10三種數(shù)字,每人則可喊0,5,10,15,20五種數(shù)字,當兩人所出數(shù)字之和等于甲所喊數(shù)字時為甲勝,當兩人所出數(shù)字之和等于乙所喊數(shù)字時為乙勝,若甲喊10,乙喊15時,則 ( ). A.甲勝的概率大 B.乙勝的概率大 C.甲、乙勝的概率一樣大 D.不能確定 解析 兩人共有9種出數(shù)的方法,其中和為10的方法有3種,和為15的方法有2種,故甲勝的概率要大,應選A. 答案 A 2.(xx合肥二模)將號碼分別為1,2,3,4的四個小球放入一個袋中,這些小球僅號碼不同,其余完全相同,甲從袋中摸出一個小球,其號碼為a,放回后,乙從此口袋中再摸出一個小球,其號碼為b,則使不等式a-2b+4<0成立的事件發(fā)生的概率為 ( ). A. B. C. D. 解析 由題意知(a,b)的所有可能結果有44=16個.其中滿足a-2b+4<0的有(1,3),(1,4),(2,4),(3,4),共4個,所以所求概率為. 答案 C 二、填空題(每小題5分,共10分) 3.某同學同時擲兩顆骰子,得到點數(shù)分別為a,b,則雙曲線-=1的離心率e>的概率是________. 解析 e= >,∴b>2a,符合b>2a的情況有:當a=1時,b=3,4,5,6四種情況;當a=2時,b=5,6兩種情況,總共有6種情況.則所求概率為=. 答案 4.(xx上海)三位同學參加跳高、跳遠、鉛球項目的比賽.若每人都選擇其中兩個項目,則有且僅有兩人選擇的項目完全相同的概率是________(結果用最簡分數(shù)表示). 解析 根據(jù)條件求出基本事件的個數(shù),再利用古典概型的概率計算公式求解.因為每人都從三個項目中選擇兩個,有(C)3種選法,其中“有且僅有兩人選擇的項目完全相同”的基本事件有CCC個,故所求概率為=. 答案 三、解答題(共25分) 5.(12分)(xx棗莊二模)袋內裝有6個球,這些球依次被編號為1,2,3,…,6,設編號為n的球重n2-6n+12(單位:克),這些球等可能地從袋里取出(不受重量、編號的影響). (1)從袋中任意取出一個球,求其重量大于其編號的概率; (2)如果不放回的任意取出2個球,求它們重量相等的概率. 解 (1)若編號為n的球的重量大于其編號. 則n2-6n+12>n,即n2-7n+12>0. 解得n<3或n>4. ∴n=1,2,5,6.∴從袋中任意取出一個球,其重量大于其編號的概率P==. (2)不放回的任意取出2個球,這兩個球編號的所有可能情形共有C=15種. 設編號分別為m與n(m,n∈{1,2,3,4,5,6},且m≠n)球的重量相等,則有m2-6m+12=n2-6n+12,即有(m-n)(m+n-6)=0. ∴m=n(舍去)或m+n=6. 滿足m+n=6的情形為(1,5),(2,4),共2種情形. 由古典概型,所求事件的概率為. 6.某省實驗中學共有特級教師10名,其中男性6名,女性4名,現(xiàn)在要從中抽調4名特級教師擔任青年教師培訓班的指導教師,由于工作需要,其中男教師甲和女教師乙不能同時被抽調. (1)求抽調的4名教師中含有女教師丙,且4名教師中恰有2名男教師、2名女教師的概率; (2)若抽到的女教師的人數(shù)為ξ,求P(ξ≤2). 解 由于男教師甲和女教師乙不能同時被抽調,所以可分以下兩種情況: ①若甲和乙都不被抽調,有C種方法; ②若甲和乙中只有一人被抽調,有CC種方法,故從10名教師中抽調4人,且甲和乙不同時被抽調的方法總數(shù)為C+CC=70+112=182.這就是基本事件總數(shù). (1)記事件“抽調的4名教師中含有女教師丙,且恰有2名男教師,2名女教師”為A,因為含有女教師丙,所以再從女教師中抽取一人,若抽到的是女教師乙,則男教師甲不能被抽取,抽調方法數(shù)是C;若女教師中抽到的不是乙,則女教師的抽取方法有C種,男教師的抽取方法有C種,抽調的方法數(shù)是CC.故隨機事件“抽調的4名教師中含有女教師丙,且4名教師中恰有2名男教師、2名女教師”含有的基本事件的個數(shù)是C+CC=40. 根據(jù)古典概型概率的計算公式得P(A)==. (2)ξ的可能取值為0,1,2,3,4,所以P(ξ≤2)=1-P(ξ>2)=1-P(ξ=3)-P(ξ=4),若ξ=3,則選出的4人中,可以含有女教師乙,這時取法為CC種,也可以不含女教師乙,這時有CC種,故P(ξ=3)===; 若ξ=4,則選出的4名教師全是女教師,必含有乙,有C種方法,故P(ξ=4)==,于是P(ξ≤2)=1--==. 特別提醒:教師配贈習題、課件、視頻、圖片、文檔等各種電子資源見《創(chuàng)新設計高考總復習》光盤中內容.- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 2019-2020年高考數(shù)學 第十一篇 第4講 古典概型限時訓練 新人教A版 2019 2020 年高 數(shù)學 第十 一篇 古典 限時 訓練 新人
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權,請勿作他用。
鏈接地址:http://m.appdesigncorp.com/p-2491061.html