《《圓錐和圓錐的體積》教學設計》由會員分享,可在線閱讀,更多相關《《圓錐和圓錐的體積》教學設計(2頁珍藏版)》請在裝配圖網上搜索。
1、
圓錐和圓錐的體積
教學內容: 教材第 16~ 19 頁圓錐的認識和體積計算、例 1。
教學要求:
l .使學生認識圓錐的特征和各部分名稱, 掌握高的特征, 知道測量圓錐高的方法。
2 .使學生理解和掌握圓錐體積的計算公式,并能正確地求出圓錐的體積。
3 .培養(yǎng)學生初步的空間觀念和發(fā)展學生的思維能力。
教具準備: 長方體、正方體、圓柱體等,根據(jù)教材第 167 頁自制的圓錐,演示測
高、等底、等高的教具,演示得出圓錐體積等于等底等高圓柱體積的 的教具。
教學重點: 掌握圓錐的特征。
教學難點: 理解和掌握圓錐體積的計算公式。
2、
教學過程:
一、鋪墊 孕伏:
1 . 說出圓柱的體積計算公式。
2 . 我們已經學過了長方體、正方體及圓柱體 ( 邊說邊出示實物圖形 ) 。在日常生活和生產中,我們還常??吹较旅嬉恍┪矬w ( 出示教材第 16 頁插圖 ) 。這些物體的形狀都是圓錐體,簡稱圓錐。我們教材中所講的圓錐,都是直圓錐。今天這節(jié)課,就學習圓錐和圓錐的體積。 ( 板書課題 )
二、自主探究:
1 .認識圓錐。
我們在日常生活中,還見過哪些物體是這樣的圓錐體,誰能舉出一些例
子?
2 .根據(jù)教材第 16 頁插圖,和學生舉的例子通過幻燈片或其他方法抽象出立體圖。
3 .
3、利用學生課前做好的圓錐體及立體圖通過觀察、手摸認識圓錐的特點。
(1) 圓錐的底面是個圓,圓錐的側面是一個曲面。
(2) 認識圓錐的頂點, 從圓錐的頂點到底面圓心的距離是圓錐的高。 ( 在圖上表示出這條高 ) 提問:圖里畫的這條高和底面圓的所有直徑有什么關系 ?
4 .學生練習。
口答練習三第 1 題。
5 .教學圓錐高的測量方法。 ( 見課本第 17 頁有關內容 )
6 .讓學生根據(jù)上述方法測量自制圓錐的高。
7 .實驗操作、推導圓錐體積計算公式。
(1) 通過演示使學生知道什么叫等底等高。 ( 具體方法可見教材第 18 頁上
面的
4、圖 )
(2) 讓學生猜想:老師手中的圓錐和圓柱等底等高, 你能猜想一下它們體積之間有怎樣的關系 ?
(3) 實驗操作,發(fā)現(xiàn)規(guī)律。
在空圓錐里裝滿黃沙, 然后倒入空圓柱里, 看看倒幾次正好裝滿。 ( 用有色水演示也可 ) 從倒的次數(shù)看,你發(fā)現(xiàn)圓錐體積與等底等高的圓柱體積之間有怎
樣的關系 ?得出圓錐的體積是與它等底等高的圓柱體體積的 。
老師把圓柱里的黃沙倒進圓錐, 問:把圓柱內的沙往圓錐內倒三次倒光,你又發(fā)現(xiàn)什么規(guī)律 ?
(4) 是不是所有的圓柱和圓錐都有這樣的關系 ?教師可出示不等底不等高的圓錐、圓柱,讓學生通過觀察實驗, 得出只有等底等
5、高的圓錐才是圓柱體積的
。
(5) 啟發(fā)引導推導出計算公式并用字母表示。
圓錐的體積 =等底等高的圓柱的體積
=底面積高
用字母表示: V= Sh
(6) 小結:要求圓錐體積必須知道哪些條件, 公式中的底面積乘以高, 求的是什么 ?為什么要乘以 ?
8 .教學例 l
(1) 出示例 1
(2) 審題后可讓學生根據(jù)圓錐體積計算公式自己試做。
(3) 批改講評。注意些什么問題。三、鞏固練習
1 . 做練習三第 2 題。
學生做在課本上。小黑板出示,指名口答,老師板書。錯的要求說明
理由。 2 .做練習三第 4 題。學生書面練習,小組交流,集體訂正。
四、課堂小結
這節(jié)課你學習了什么內容 ?圓錐有怎樣的特征 ?圓錐的體積怎樣計算 ?為
什么 ?五、課堂作業(yè)
練習三第 3 題及數(shù)訓。
六、板書:
圓 錐
圓錐的特征:底面是圓,
側面是一個曲面,展開是一個扇形。
它有一個頂點和一條高。
圓柱的體積=底面積高
圓錐的體積= 圓柱體積
圓錐的體積= 底面積高 V= Sh