基于TRIZ的復合式旋流器創(chuàng)新設計及實驗工藝分析【一種新型的油水分離設備】【說明書+CAD+SOLIDWORKS】
基于TRIZ的復合式旋流器創(chuàng)新設計及實驗工藝分析【一種新型的油水分離設備】【說明書+CAD+SOLIDWORKS】,一種新型的油水分離設備,說明書+CAD+SOLIDWORKS,基于TRIZ的復合式旋流器創(chuàng)新設計及實驗工藝分析【一種新型的油水分離設備】【說明書+CAD+SOLIDWORKS】,基于,triz,復合,式旋流器
任務書 2014 年 3 月 17 日至 2014 年 5 月 30 日題 目:基于TRIZ的復合式旋流器創(chuàng)新設計及實驗工藝分析 姓 名: 學 號: 學 院:專 業(yè): 年 級: 指導教師: (簽名)系主任(或教研室主任): (簽章) 任 務(包括設計任務及目標、技術要求、工作要求)1. TRIZ理論介紹及復合式旋流器簡介TRIZ 發(fā)明問題解決理論: TRIZ中問題解決工具可以分成兩組:1、分析工具-定義與描述問題,輔助問題的分析過程,它包括ARIZ、物質-場分析法、理想解等。2、知識庫工具-來源于人類創(chuàng)新經驗知識的積累與整理,可提供最高水平的問題解決方法,它包括產品的技術進化模式、40條發(fā)明原理、4個分離原理、76個標準解、典型創(chuàng)新實例、效應等。發(fā)明問題解決算法ARIZ是TRIZ主要的分析問題、解決問題的工具。TRIZ提供了76個標準建模和解決方法。復合式旋流器工作時,依靠電機轉動帶動旋轉柵,使進入分離器的混和液由軸向運動改變?yōu)檩S向邊運動邊旋轉的運動方式,進料液獲得離心力使不同密度的介質實現(xiàn)徑向遷移而達到分離的目的。在此過程中電機的轉動、旋轉柵對液體作用、流體對旋流器的沖擊都會產生一定振動,能量較大的振動勢必對流場的穩(wěn)定性產生破壞作用。研究復合式旋流分離器結構是否合理、振動主要因素與主要頻率、振動特性與分離特之間的關系。在復合式旋流器基礎上研制一種利用液體驅動旋轉柵高速旋轉的復合式旋流器。本課題利用TRIZ理論解決復合式旋流結構沖突,進而完成其結構創(chuàng)新。2. 設計任務了解并認識TRIZ理論;進行復合式旋流器的開發(fā)設計與主要構件結構創(chuàng)新;復合式旋流器主要構件結構參數(shù)的設計計算及其實驗工藝流程的建立;完成復合式旋流器三維實體造型;進行復合式旋流器分離性能分析;撰寫畢業(yè)設計論文(10000字以上)和開題報告,準備答辯。3 原始數(shù)據(jù)復合式旋流器額定處理量4 m2/h,分流比10%以內,壓力小于1MPa。4 設計要求明確設計任務,注意設計重點,查閱與畢業(yè)設計課題相關的文獻資料;利用TRIZ沖突問題解決理論和發(fā)明原理解決復合式旋流器沖突問題;合理進行復合式旋流器結構布置方案,進行其構件結構優(yōu)選設計及三維實體造型;理論分析、計算結果正確、滿足設計及實際制造要求;設計和制圖符合國家標準;論文文字通順、語言簡練、字跡工整;獨立完成設計。主要內容改進部分 圖1復合式旋流器示意圖復合式旋流器主要結構及工作原理如下:復合式旋流器是一種液體驅動旋轉柵高速旋轉的旋流器,其結構如圖1所示。從結構上看可以分為二大部分,即動力部分,主要實現(xiàn)旋轉柵的旋轉運動;靜態(tài)旋流器單體部分。本文的主要工作:1.利用TRIZ理論進行復合式旋流器結構創(chuàng)新,尤其是一些主要構件結構創(chuàng)新;2.完成復合式旋流器結構方案布置的優(yōu)選設計及主要構件的實體造型。3.進行復合式旋流器分離性能的影響因素分析。設計進度第一階段(1周)查閱有關產品創(chuàng)新理論及旋流器資料、閱讀參考書,寫開題報告,補充學習復合式旋流器原理、三維造型和流體機械等有關知識。第二階段(2周)基于TRIZ的復合式旋流器理論分析與開發(fā)設計;復合式旋流器主要構件結構創(chuàng)新及主要構件的結構參數(shù)計算;第三階段(5周)完成基于SOLIDWORK系統(tǒng)的復合式旋流器三維參數(shù)化實體造型設計:進行復合式旋流器分離性能的影響因素分析;第四階段 (2周)撰寫論文,準備答辯任務更改記錄更 改 原 因更 改 內 容主要參考文獻1 檀潤華. 創(chuàng)新設計:TRIZ發(fā)明問題解決理論M. 機械工程出版社,2002.22 劉曉敏,檀潤華,蔣明虎等,水力旋流器結構形式與參數(shù)關系研究J. 機械設計,2005,22(2)3 檀潤華. 發(fā)明問題解決理論M. 科學出版社,2004 4 李劍石,蔣明虎. 復合式旋流器旋轉頭結構優(yōu)化設計及分離特性研究D. 大慶石油學院,2007.25 李楓,王尊策. 復合式水力旋流器結構優(yōu)化設計及性能研究D. 大慶石油學院,2003.76 李森,王尊策. 復合式水力旋流器振動特性及分離特性研究D. 大慶石油學院,2006.37 劉曉敏等. 動態(tài)水力旋流器脫油動力結構布置改進研究J. 化工進展2005(6)8 其他中文及外文文獻自查?;赥RIZ的復合式旋流器創(chuàng)新設計說明書摘 要本文介紹了一種新型的油水分離設備復合式旋流器,并基于發(fā)明問題解決任務理論(TRIZ),對復合式旋流器的結構布局進行了分析及優(yōu)化創(chuàng)新。復合旋流器是一種新型離心分離裝置,它既能保持動態(tài)的強旋流強度及壓力損失小等特點,又能大大降低振動對分離的影響。但目前復合式旋流器的結構設計仍然存在諸多問題,如底流與溢流排出方向相同時,雖然解決了底流背壓不足的問題,但大小錐段角動量補償,使得溢流流動卻受到一定影響;而底流與溢流排出方向相反時,能較好的控制溢流的形成,但溢流壓力損失大,影響了分離效率。針對以上問題,本文基于發(fā)明問題解決理論,對復合式旋流器的結構布局進行了分析,并采用ARIZ發(fā)明問題解決算法對復合式旋流器結構進行了優(yōu)化創(chuàng)新設計,最終獲得解決了技術矛盾,并具有創(chuàng)新性的結構布局方案。關鍵字:TRIZ;復合式旋流器;分離性能;結構優(yōu)化目錄摘 要1關鍵字1第一章 緒 論11.1 復合旋流器介紹11.2 TRIZ理論介紹11.3 TRIZ主要內容31.4 研究意義3第二章 TRIZ設計流程52.1 TRIZ解決過程和解決工具52.2 復合式旋流器分離性能分析52.3 運用Pro/Innovator模塊分析72.3.1 問題分析72.3.2 解決問題82.3.3 最終方案8第三章 復合式旋流器結構設計93.1 影響旋流器工作的參數(shù)93.1.1 關于結構參數(shù)93.1.2 關于操作參數(shù)103.2 復合式旋流器結構元件設計103.2.1 旋轉柵結構設計103.2.2 溢流管結構設計113.2.3 旋流分離體結構設計133.2.4 底流出口尾管結構設計133.3 復合式旋流器整體設計總結14第四章 驅動電機的選型計算164.1 轉動慣量計算164.2 將負載質量換算成電機輸出軸上的轉動慣量164.3 計算電機輸出的總力矩M174.4負載起動頻率估算。174.5 一般參數(shù)的計算及相互關系18總 結20參考文獻21致 謝22第一章 緒 論1.1 復合旋流器介紹復合式水力旋流器是一種將動態(tài)與靜態(tài)旋流分離技術有機結合在一起的新興旋流分離裝置, 具有靜態(tài)、 動態(tài)水力旋流器的雙重優(yōu)點: 分離效率高、 流場穩(wěn)定、 單根處理量增大且靈活、 液流壓力損失相對較小等。圖1復合式旋流器示意圖復合式水力旋流器有脫油型和脫水型兩種,其分離原理都是利用兩種不互溶混合液間的密度差在旋流器內進行離心分離1。電機通過聯(lián)軸器或皮帶輪使旋轉柵作高速旋轉運動, 待分離油水混合液經旋轉柵加速, 受壓力作用, 由流道進入靜態(tài)旋流分離體入口腔, 此時液流被強制旋轉, 產生高轉速渦流。旋流強度在旋流器大小錐段內得到加強, 輕質相油受離心力作用運移到旋流分離體中心, 形成油核, 沿中心反向運移至溢流嘴、 空心驅動軸中心孔及溢流腔后被排出。同時, 重質相水被甩到靜態(tài)旋流體內壁, 沿尾管的底流口排出,其結構及工作原理見圖 1,22。圖 1 為同軸直驅動式。這種方式是由電機驅動來實現(xiàn)旋流分離。其結構主要由動力組件(如電機、 空心驅動軸、 旋轉柵及溢流嘴等組成)、入口腔、溢流腔、靜態(tài)旋流分離體等組成。1.2 TRIZ理論介紹TRIZ理論全名為發(fā)明問題解決理論,是阿奇舒勒(G.S.Altshuller)在1946年創(chuàng)立的,Altshuller也被尊稱為TRIZ之父3。1946年,Altshuller開始了發(fā)明問題解決理論的研究工作。當時Altshuller在前蘇聯(lián)里海海軍的專利局工作,在處理世界各國著名的發(fā)明專利過程中,他總是考慮這樣一個問題:當人們進行發(fā)明創(chuàng)造、解決技術難題時,是否有可遵循的科學方法和法則,從而能迅速地實現(xiàn)新的發(fā)明創(chuàng)造或解決技術難題呢?答案是肯定的!Altshuller發(fā)現(xiàn)任何領域的產品改進、技術的變革、創(chuàng)新和生物系統(tǒng)一樣,都存在產生、生長、成熟、衰老、滅亡,是有規(guī)律可循的。人們如果掌握了這些規(guī)律,就能能動地進行產品設計并能預測產品的未來趨勢。以后數(shù)十年中,Altshuller窮其畢生的精力致力于TRIZ理論的研究和完善。在他的領導下,前蘇聯(lián)的研究機構、大學、企業(yè)組成了TRIZ的研究團體,分析了世界近250萬份高水平的發(fā)明專利,總結出各種技術發(fā)展進化遵循的規(guī)律模式,以及解決各種技術矛盾和物理矛盾的創(chuàng)新原理和法則,建立一個由解決技術,實現(xiàn)創(chuàng)新開發(fā)的各種方法、算法組成的綜合理論體系,并綜合多學科領域的原理和法則,建立起TRIZ理論體系。圖2 旋流器工作原理80年代中期前,該理論對其他國家保密,80年代中期,隨一批科學家移居美國等西方國家,逐漸把該理論介紹給世界產品開發(fā)領域,對該領域已產生了重要的影響。21世紀,每個國家都不可能離開全球市場而獨立發(fā)展,在經濟全球化的趨勢下,就必要在激烈的市場競爭中求生存,而成功生存的法定就在于創(chuàng)新。國家主席胡錦濤于2006年1月9日在全國科技大會上宣布了中國未來15年科技發(fā)展的目標:2020年建成創(chuàng)新型國家,使科技發(fā)展成為經濟社會發(fā)展的有力支撐。這也奠定了創(chuàng)新中國的理論。TRIZ理論正可以幫助我們實現(xiàn)批量發(fā)明創(chuàng)新的夙愿。1.3 TRIZ主要內容創(chuàng)新從最通俗的意義上講就是創(chuàng)造性地發(fā)現(xiàn)問題和創(chuàng)造性地解決問題的過程,TRIZ理論的強大作用正在于它為人們創(chuàng)造性地發(fā)現(xiàn)問題和解決問題提供了系統(tǒng)的理論和方法工具?,F(xiàn)代TRIZ理論體系主要包括以下幾個方面的內容:1.創(chuàng)新思維方法與問題分析方法TRIZ理論中提供了如何系統(tǒng)分析問題的科學方法,如多屏幕法等;而對于復雜問題的分析,則包含了科學的問題分析建模方法物-場分析法,它可以幫助快速確認核心問題,發(fā)現(xiàn)根本矛盾所在。2.技術系統(tǒng)進化法則針對技術系統(tǒng)進化演變規(guī)律,在大量專利分析的基礎上TRIZ理論總結提煉出八個基本進化法則。利用這些進化法則,可以分析確認當前產品的技術狀態(tài),并預測未來發(fā)展趨勢,開發(fā)富有競爭力的新產品。3.技術矛盾解決原理不同的發(fā)明創(chuàng)造往往遵循共同的規(guī)律。TRIZ理論將這些共同的規(guī)律歸納成40個創(chuàng)新原理,針對具體的技術矛盾,可以基于這些創(chuàng)新原理、結合工程實際尋求具體的解決方案。4.創(chuàng)新問題標準解法針對具體問題的物-場模型的不同特征,分別對應有標準的模型處理方法,包括模型的修整、轉換、物質與場的添加等等。5.發(fā)明問題解決算法ARIZ主要針對問題情境復雜,矛盾及其相關部件不明確的技術系統(tǒng)。它是一個對初始問題進行一系列變形及再定義等非計算性的邏輯過程,實現(xiàn)對問題的逐步深入分析,問題轉化,直至問題的解決。6.基于物理、化學、幾何學等工程學原理而構建的知識庫基于物理、化學、幾何學等領域的數(shù)百萬項發(fā)明專利的分析結果而構建的知識庫可以為技術創(chuàng)新提供豐富的方案來源。1.4 研究意義TRIZ理論以其良好的可操作性、系統(tǒng)性和實用性在全球的創(chuàng)新和創(chuàng)造學研究領域占據(jù)著獨特的地位。在經歷了理論創(chuàng)建與理論體系的內部集成后,TRIZ理論正處于其自身的進一步完善與發(fā)展,以及與其它先進創(chuàng)新理論方法的集成階段,尤其是已成為最有效的計算機輔助創(chuàng)新技術和創(chuàng)新問題求解的理論與方法基礎。經過半個多世紀的發(fā)展,TRIZ理論已經發(fā)展成為一套解決新產品開發(fā)實際問題的成熟的理論和方法體系,它實用性強,并經過實踐檢驗,應用領域也從工程技術領域擴展到管理、社會等方面。TRIZ理論在西方工業(yè)國家受到極大重視,TRIZ的研究與實踐得以迅速普及和發(fā)展。如今它已為眾多知名企業(yè)取得了重大的效益。實踐證明,運用TRIZ理論,可大大加快人們創(chuàng)造發(fā)明的進程,而且能得到高質量的創(chuàng)新產品。它能夠幫助我們系統(tǒng)的分析問題情境,快速發(fā)現(xiàn)問題本質或者矛盾,它能夠準確確定問題探索方向,幫助我們突破思維障礙,打破思維定勢,以新的視覺分析問題,進行系統(tǒng)思維,根據(jù)技術進化規(guī)律預測未來發(fā)展趨勢,幫助我們開發(fā)富有競爭力的新產品。復合旋流器是一種新型離心分離裝置,它既能保持動態(tài)的強旋流強度及壓力損失小等特點,又能大大降低振動對分離的影響。但目前復合式旋流器的結構設計仍然存在諸多問題,如底流與溢流排出方向相同時,雖然解決了底流背壓不足的問題,但大小錐段角動量補償,使得溢流流動卻受到一定影響;而底流與溢流排出方向相反時,能較好的控制溢流的形成,但溢流壓力損失大,影響了分離效率。針對以上問題,本文基于發(fā)明問題解決理論,對復合式旋流器的結構布局進行了分析,并采用ARIZ發(fā)明問題解決算法對復合式旋流器結構進行了優(yōu)化創(chuàng)新設計,最終獲得解決了技術矛盾,并具有創(chuàng)新性的結構布局方案。第二章 TRIZ設計流程2.1 TRIZ解決過程和解決工具發(fā)明問題解決理論(TRIZ)的核心是技術進化原理。按這一原理,技術系統(tǒng)一直處于進化之中,解決沖突是其進化的推動力。進化速度隨技術系統(tǒng)一般沖突的解決而降低,使其產生突變的唯一方法是解決阻礙其進化的深層次沖突。G.S. Altshuller依據(jù)世界上著名的發(fā)明,研究了消除沖突的方法,他提出了消除沖突的發(fā)明原理,建立了消除沖突的基于知識的邏輯方法,這些方法包括發(fā)明原理(Inventive Principles)、發(fā)明問題解決算法(ARIZ,Algorithm for Inventive Problem Solving)及標準解(TRIZ Standard Techniques)。在利用TRIZ解決問題的過程中,設計者首先將待設計的產品表達成為TRIZ問題,然后利用TRIZ中的工具,如發(fā)明原理、標準解等,求出該TRIZ問題的普適解或稱模擬解(Analogous solution);最后設計者在把該解轉化為領域的解或特解。阿利赫舒列爾和他的TRIZ研究機構50多年來提出了TRIZ系列的多種工具,如沖突矩陣、76標準解答、ARIZ、AFD、物質-場分析、ISQ、DE、8種演化類型、科學效應、40個創(chuàng)新原理,39個工程技術特性,物理學、化學、幾何學等工程學原理知識庫等,常用的有基于宏觀的矛盾矩陣法(沖突矩陣法)和基于微觀的物場變換法。事實上TRIZ針對輸入輸出的關系(效應)、沖突和技術進化都有比較完善的理論。這些工具為創(chuàng)新理論軟件化提供了基礎,從而為TRIZ的實際應用提供了條件。其主要解決發(fā)明創(chuàng)新問題的流程示意如圖2-1所示:2.2 復合式旋流器分離性能分析設計旋流器主要是為了增加旋流場強度和提高流場穩(wěn)定性, 以提高分離效率。改進旋流供液結構與優(yōu)選分離配置形式方案設計, 不僅可改進靜、 動態(tài)水力旋流器自身結構的不足( 如靜態(tài)水力旋流器旋流強度有待于加強, 動態(tài)水力旋流器振動幅度需大大減弱等) , 而且能有效地實現(xiàn)穩(wěn)定的油水分離。復合式旋流器工作時,底流背壓不足將導致混合液經分離后含有大量的溢流隨底流排出,而由于錐段角動量補償,影響了輕質液相的溢流電機轉速和輔助機構安裝不合理會引起振動,同時會帶來噪音。旋轉柵對輕質液相的剪切會導致分離效果下降。旋轉混合液會產生熱量,造成壓力損失和能量耗散。這些弊端產生的主要原因是零部件設計不合理造成的。系統(tǒng)分析問題分解矛盾問題基本問題創(chuàng)新原理創(chuàng)新方案庫專利查詢解決方案解決方案方案評價圖2-1 發(fā)明問題解決流程示意圖目前,前人4已優(yōu)選的設計出圖 2-2 所示旋流分離體的三種分離形式配置方案。這三種結構方案主要優(yōu)點是轉體在靜止殼體內部, 振動非常小, 對入口壓力及流量操作范圍靈活性很強。第一種方案(圖2-2 a)只需有很小的底流背壓即能很好地完成分離。經旋流加速后,分離液會很快從溢流管尾端排出,此結構解決了來液經分離后仍有少量溢流隨底流排出的問題, 使得操作難度減小, 操作參數(shù)改變既容易又靈活,但底流口處流場穩(wěn)定性較差。第二種方案(圖2-2 b)中在底流尾端加一個推進器結構, 以推動形成的溢流更好地向另一端排出, 同時保持了底流口處流場的穩(wěn)定。但由于底流與溢流排出方向相反,且溢流管旋轉,使得已經很低的溢流壓力經損失后變得更低, 此時即使溢流放空, 也會對分離稍有影響。第三種方案(圖2-2 c)是通過加長尾管, 使得補償角動量損失后產生的溢流能夠運移到另一端, 長長的尾管只起很小的分離作用, 但它能很好地穩(wěn)定底流, 使流場更穩(wěn)定2。但此結構操作起來需要有良好的底流背壓時才能保證其穩(wěn)定的有效分離。圖2-2 常見復合式旋流器結構布局方案2.3 運用Pro/Innovator模塊分析2.3.1 問題分析首先,明確解決次問題的目的:不對系統(tǒng)做大的改動,保證底流流場穩(wěn)定,底流和溢流壓力損失小,底流與溢流能穩(wěn)定有效的分離。然后,對系統(tǒng)存在的技術沖突進行分析。l 技術沖突1:底流與溢流排出方向相同,壓力損失小,綜合分離效率高,但底流和溢流穩(wěn)定性差,造成局部壓力波動,產生乳化作用概率大,分離級效率低。l 技術沖突2:底流與溢流排出方向相反,壓力損失大,綜合分離效率低,但底流和溢流穩(wěn)定性好,分離級效率變高。利用系統(tǒng)分析對整個系統(tǒng)做進一步的分析,找出產生此問題的區(qū)域:旋流管中輕質液體與重質液體相互作用的區(qū)域。更具解決創(chuàng)新問題的模型可以得到提示利用系統(tǒng)中已有的資源實現(xiàn)所需的功能。而系統(tǒng)在此區(qū)域中可用的資源包括旋流管,溢流管,底流管,旋轉柵,旋轉動力機構。此時,我們可以得到這樣的問題:如何利用旋流管,溢流管,底流管,旋轉柵,旋轉動力機構的結構設計布局實現(xiàn)底流與溢流能穩(wěn)定有效的分離,且分離過程中壓力損失小,流場穩(wěn)定?接著,借助Pro/Innovator 軟件中的問題分析功能,針對上述問題描述抽取本質問題,經分析找出實際問題中的矛盾為:溢流系統(tǒng)中,輕質液體與重質液體在旋流管內進行分離,底流與溢流排出方向相同時,壓力損失小,但流場穩(wěn)定性差,分離級效率低;底流與溢流排出方向相反時,流場穩(wěn)定性好,壓力損失大,分離綜合效率低。2.3.2 解決問題問題矛盾確定之后,根據(jù)Pro/Innovator 軟件中的創(chuàng)新原理提示,經過分析,采用“分隔”原理,將互相矛盾的要求分別用相互獨立的部件實現(xiàn):采用底流與溢流排出方向相反設計,確保流場穩(wěn)定性好,同時采用附加結構設計,補充溢流所損失的壓力,保證分離的綜合效率高。2.3.3 最終方案采用底流與溢流排出方向相反設計,并通過加長尾管很好地穩(wěn)定流場,且重質液體排出口采用直通式,消除底流流體遇見拐角損失的壓力,同時采用螺旋導流片使輕質液滴有穩(wěn)定的流場,在溢流管內部采用內螺紋并利用旋轉動力機構轉動內螺紋對管內溢流體施加推動壓力,補充溢流體所損失的壓力。下一章將提供該最終方案的復合式旋流器的具體結構設計。第三章 復合式旋流器結構設計復合式旋流器作為一種新型的液體分離設備,其目的是實現(xiàn)對混合液體的分離,因此分離效率的高低成了設備優(yōu)劣的主要考核指標。分離效率的高低則主要與以下工作參數(shù)有關。3.1 影響旋流器工作的參數(shù)影響旋流器工作的參數(shù)可分為設備結構參數(shù)和操作參數(shù)兩大類。液/液旋流分離器是基于離心沉降分離原理進行分離的,要求兩相之間必須存在一定的密度差。根據(jù)Storks原理,液滴受到的凈分離力為Fx=x3c-sv26r-3xcvrel (公式3-1)式中,x為液滴粒徑;c 和s 分別為連續(xù)相和分散相密度;v 為連續(xù)相的切向速度;r 為液滴的徑向位置;c 為連續(xù)相動力粘度;vrel 為液滴的相對速度。3.1.1 關于結構參數(shù)有影響的結構參數(shù)有:旋流器直徑 D、給料口直徑df ,溢流管直徑dov 、底流出口直徑ds、溢流管插入深度hov,圓柱體高度H 及錐角 的大小。為了說明上述參數(shù)的影響,先來看一下旋流器的體積處理量公式:Q=KDdovP , m3/hr ( 公式3-1 )式中,K為系數(shù),隨 df/D 值的增大而增大;D及 hov 意義見上述,均以 m 計; P為給料壓力,以kPa計。由上公式可見,在其它參數(shù)不變的情況下,旋流器的處理能力與旋流器直徑成正比。但是經常是溢流管直徑也與旋流器直徑成正比,結果將是:Q D2,即增大旋流器直徑到2倍,處理能力將增加到4倍。溢流管直徑 dov 是重要的可調參數(shù),增大溢流管直徑處理量將成正比增加,反之亦然。故經常是小范圍調節(jié)處理能力的有效辦法。但隨著溢流管直徑的增大,軸向零速包絡面將外移,溢流粒度會變粗。底流出口直徑 ds 的改變對旋流器處理能力的影響較小,但隨著底流出口直徑增大,軸向零速包絡面內移,底流流量將增大。溢流口插入深度 hov 對旋流器的分離效率影響較大。插入深度越小,分離效率越低,但是,插入深度越不是越深越好。許妍霞5通過建模分析發(fā)現(xiàn),當插入深度為168mm時,分離效率最佳。3.1.2 關于操作參數(shù)主要是指混合液濃度和入口壓力。混合液濃度高,將導致分級分離效率降低。入口壓力過大,不會影響分級分離效率,但將影響綜合分離效率。操作參數(shù)主要視具體需要分離的對象和現(xiàn)場工況而定,本文此處不作具體分析。3.2 復合式旋流器結構元件設計3.2.1 旋轉柵結構設計旋轉柵固定于空心軸外側, 對液流起加速導旋作用,是關鍵的液體導旋件。旋轉柵之所以可以影響到復合式旋流器的分離效率,是因為它產生的剪切乳化改變了液體的性質,使進入旋流器中的油水混合液油滴乳化,粒徑變小,從而增加了旋流分離難度,降低分離效率。合理的直板式旋轉葉片數(shù)既容易加工,分離效果又很好,且壓力損失也很小。其尾端設計呈橢球形導流錐,能使液流穩(wěn)定地充滿分離腔,可避免產生強紊流。其具體結構采用整體及兩端加長的容積式外套,一定程度上會減少壓力損失,降低液滴剪切破碎的幾率,增加流場的穩(wěn)定性。李楓6針對復合式旋流器中影響混合液分離的影響因素柵片數(shù)目、柵片的直線長度、柵片與圓柱內孔的間隙進行試驗分析,發(fā)現(xiàn)設計參數(shù)為葉片數(shù)3、柵片長度160mm、帶夾持同步筒時,能很好地滿足高分離效率(99%)的設計要求。圖3-1是旋轉柵處局部結構原理圖。圖3-1旋轉柵處局部結構原理圖3.2.2 溢流管結構設計整體的溢流管設計,主要根據(jù)傳統(tǒng)的溢流管結構進行改進,具體示意圖如3-2所示。圖3-2 溢流管結構原理圖溢流入口溢流出口溢流管左部分主要為溢流嘴(溢流入口),安裝時伸入旋流分離體內;而右部分為溢流出口,采取在溢流管右端鉆通孔的方式,將溢流體排出至溢流腔;最右端為聯(lián)接電機轉軸的鍵槽,起傳遞轉動慣量的作用。溢流嘴聯(lián)接于旋轉空心軸上,主要起收油及穩(wěn)定局部流場的作用。當液流從柵排出后,由于液體的動能和壓能的作用,使液體繼續(xù)在靜態(tài)旋流器單體內邊旋轉邊向下運動。由于旋轉柵到靜態(tài)旋流器單體間的過渡(即有效截面積的變化)是瞬時和突然的,所以在突出的溢流嘴外邊壁和旋轉柵下平面間必然產生渦流。渦流場的大小受到液體流量、旋轉柵轉速以及溢流口外表面輪廓形狀的影響。為了使流場穩(wěn)定和利于油核的排出,溢流嘴入口處可設計成外錐型(圖3-3),該漏斗形錐面,可大大緩解收油處入口的對稱收縮及渦流紊亂現(xiàn)象7,見圖3-3。另外溢流管外采用螺旋導流槽設計,利用螺紋隨著旋轉空心軸旋轉引導輕質液體推往左端漏斗型錐面端,并通過該端面攔截作用將輕質液體擠壓入溢流管。當旋流轉速越高,分離動力越大時,該擠入溢流管的壓力也就越大,分離效率越高。漏斗形錐面溢流管圖3-3 溢流嘴結構原理圖流體溢流口插入深度 hov 對旋流器的分離效率影響較大。插入深度越小,分離效率越低,但是,插入深度越不是越深越好。許妍霞5通過建模分析發(fā)現(xiàn),當插入深度為168mm時,分離效率最佳。圖3-4 溢流管內螺旋導流結構原理圖本文之前提到,采用底流與溢流排出方向相反的設計容易增大溢流壓力損失,降低綜合分離效率,因此在溢流管內也采用內螺旋導流的設計,利用螺旋導流槽與旋轉柵芯體同步旋轉的動能,推動溢流管內部的流體向溢流出口排出,充分補充了溢流損失的壓力,有效提高綜合分離效率。參照UN內螺紋設計標準,設計參考圖3-4。溢流管有效內徑大小據(jù)分離介質的濃度及性質不同, 常取 3 12 mm。 其有效內徑大小還與操作參數(shù)的控制密切相關, 有效內徑過大, 會把一部分水從收油口帶走, 過小則分離出的油不能全部被收集, 進而增加小分流比的控制難度。此外, 旋轉空心軸內孔徑應適當加大, 以減小壓力損失。圖3-5 溢流管支持軸承結構原理圖由于溢流管主要為一種旋轉空心軸結構,并帶動旋轉柵,提供混合液進入旋流分離體之前的動能,其長度跨距較大,故需要使用雙軸承座做支撐來提高結構整體剛性(圖3-5),并且選用最常用的角接觸球軸承,接觸角為30,且裝配時采用背對背串聯(lián)的方式,這樣便可固定轉軸并能承受兩個方向的軸向力。3.2.3 旋流分離體結構設計旋流體圓柱段過長,壁面阻力對旋轉動量造成較大的損失,使下游分離區(qū)不能得到足夠的旋轉動量,從而影響分離效率。在滿足結構要求的情況下,圓柱段長度越短越有利于提高分離效率。對于本設計采用的單錐旋流器,G. A. B. Young認為,錐度6或更大一些,旋流器的分離效率較高,但6錐度在更寬的流量范圍內均有較好的分離效率(圖3-6)。3.2.4 底流出口尾管結構設計底流出口處采用平行尾管設計,可增加復合式旋流器的應用領域,使之可以進一步應用于固液分離領域,如作為沉沙口可以分離出液體內的細固體顆粒。不過作為混合液分離器來說,尾管直徑大小對流體經過該段的時間影響較大,從而影響分散相向中心遷移。 G. A. B. Young的研究表明,在不同的流量下,尾段直徑為 ds /D =0.25 和 ds /D =0.33 的分離效率幾乎相同,但ds /D =0.33 可在更寬的流量范圍內提供較好的分離效率。故當D =150 mm 時,ds =50 mm。圖3-6 旋流分離體及底流出口結構設計圖當流體在旋流器尾段旋轉時分離繼續(xù)發(fā)生,適當增加尾段長度可以提高分離效率,尤其是對小粒徑的分離能力。但尾段過長,分離效率不會有明顯增加,Thew 的35 mm 旋流器尾段長度由Ls /D =3 減小到Ls /D =2 ,其分離效率不變。故可得Ls =200 mm (圖3-6)。3.3 復合式旋流器整體設計總結復合式旋流器整體結構示意圖如3-7所示。混合液由入液腔進入,經旋轉柵葉攪動加速,進入旋流分離體結構。在較快的轉速下,混合液由于內部液體密度不均勻,在離心力的作用下被分離為輕質液體和重質液體。輕質液體經溢流管傳輸至溢流腔排出,而重質液體經底流尾管排出。旋轉柵的設計是根據(jù)前人的研究經驗采用旋轉柵葉片數(shù)為3、柵片長度160mm、帶夾持同步筒的參數(shù),能很好地滿足高分離效率(99%)的設計要求。溢流管左端入口處采用內外螺旋導流槽設計,利用螺紋隨著旋轉空心軸旋轉引導輕質液體推往左端漏斗型錐面端,并通過該端面攔截作用將輕質液體擠壓入溢流管內,同時溢流管內的螺紋旋轉繼續(xù)推送輕質液體前往右端溢流腔出口,當旋流轉速越高,分離動力越大時,該擠入溢流管的壓力也就越大,分離效率越高。溢流管右端則設計了與聯(lián)軸器配合用的鍵槽,起到傳遞轉動慣量的作用;由于溢流管整體過長,為了解決溢流管剛性問題,采用了雙角接觸球軸承背對背裝配設計提高系統(tǒng)剛性。根據(jù)單錐度旋流器設計經驗,選擇旋轉分離體錐度為6,這時旋流器的分離效率較高,且在更寬的流量范圍內均有較好的分離效率。底流尾管的設計采用了平行尾管設計,可使該復合式旋流器除了能分離混合液體之外,能進一步處理帶有細小微粒固體的漿料。尾管尺寸設計采用了ds /D =0.33 和Ls /D =3 的尺寸比例,可在更寬的流量范圍內提供較好的分離效率,且優(yōu)選后的尾管長度對于提高分離效率,尤其是對小粒徑的分離能力是非常有益的。圖3-6 復合式旋流器整體結構示意圖第四章 驅動電機的選型計算復合式旋流器使用的為直流電機驅動旋轉空心軸,電機轉速 n常取小于 2000 r / min,考慮到一定的安全閾值,此處設計取其最大空載轉速為1400 r / min。4.1 轉動慣量計算在旋轉運動中,物體的轉動慣量 J 對應于直線運動中的物體質量。要計算系統(tǒng)在加速過程中產生的動態(tài)載荷,就必須計算物體的轉動慣量 J 和角加速度e,然后得慣性力矩TJe。物體的轉動慣量為:J = r 2 r dV ,式中:dV 為體積元,r為物體密度,r 為體積元與轉軸的距離。單位:kgm2。以圓柱體為例:J=W/8(D/1000)2 (公式4-1)式中:L圓柱體長度,mmD圓柱體直徑,mm4.2 將負載質量換算成電機輸出軸上的轉動慣量常見傳動機構與公式如下:Jt=J1+(1/i2)J2+Js+W/gS/22(公式4-2) 式中Jt折算至電機軸上的慣量(Kg.cm.s2)J1、J2減速齒輪慣量(Kg.cm.s2) Js 溢流管轉動慣量(Kg.cm.s2) W流體反作用力(N) S 空心管長度(cm)其中 J1=W(1/2X3.14XBP/1000)XGL24.3 計算電機輸出的總力矩M M=Ma+Mf+Mt (公式4-3)Ma=(Jm+Jt).n/T1.02102 (公式4-4)式中Ma -電機啟動加速力矩(N.m) Jm、Jt-電機自身慣量與負載慣量(Kg.cm.s2) n-電機所需達到的轉速(r/min) T-電機升速時間(s) Mf=(u.W.s)/(2i)102 (公式4-5)Mf-導軌摩擦折算至電機的轉矩(N.m) u-摩擦系數(shù) -傳遞效率 Mt=(Pt.s)/(2i)102 (公式4-6)Mt-剪切力折算至電機力矩(N.m) Pt-最大剪切力(N) 計算所得力矩28NM4.4負載起動頻率估算。數(shù)控系統(tǒng)控制電機的啟動頻率與負載轉矩和慣量有很大關系,其估算公式為 fq=fq0(1-(Mf+Mt)/Ml)(1+Jt/Jm) 1/2 (公式4-7)式中fq-帶載起動頻率(Hz) fq0-空載起動頻率 Ml-起動頻率下由矩頻特性決定的電機輸出力矩(N.m) 若負載參數(shù)無法精確確定,則可按fq=1/2fq0進行估算. (5)運行的最高頻率與升速時間的計算。由于電機的輸出力矩隨著頻率的升高而下降,因此在最高頻率 時,由矩頻特性的輸出力矩應能驅動負載,并留有足夠的余量。 (6)負載力矩和最大靜力矩Mmax。負載力矩可按式(1-5)和式(1-6)計算,電機在最大進給速度時,由矩頻特性決定的電機輸出力矩要大于Mf與Mt之和,并留有余量。一般來說,Mf與Mt之和應小于(0.2 0.4)Mmax.綜上述選取直流力矩電機70LY51 3 18 0.6/1.2 3 30000 1400 18 20 80-3504.5 一般參數(shù)的計算及相互關系在計算力矩電機各參數(shù)時個參數(shù)之間的關系如下:電壓與轉速成正比,電流與轉矩成正比,同一電壓下轉速與轉矩成反比;在不同電壓下計算轉速時計算方法如下:型號峰值堵轉最大空載轉速(r/min)轉矩(N.m)電流(A)電壓(V)功率(W)轉矩(N.m)電流(A)電壓(V)功率(W)70LY510.3141.792748.314000.17160.9614.513.92按上表參數(shù)計算10V時空載轉速:計算方法如下:n=運行電壓峰值電壓最大空載轉速=1027*1400=518 r/min計算10V時堵轉轉矩:計算方法如下:M=運行電壓峰值電壓峰值堵轉轉矩=1027*0.314=0.1163 N.m27V轉速100轉時的轉矩和電流:計算方法如下:M=1-運行電壓最大空載轉速峰值堵轉轉矩計算方法如下:M=1-運行電壓最大空載轉速峰值堵轉電流M=(1-1001400)0.314=0.2915N.m=(1-1001400)1.79=1.66A已知轉矩或電流計算轉速:計算方法如下:M=1-已知電流/轉矩峰值堵轉轉矩/電流最大空載轉速總 結復合式旋流器是一種將動態(tài)與靜態(tài)旋流分離技術有機結合在一起的新興旋流分離裝置,具有靜態(tài)、 動態(tài)水力旋流器的雙重優(yōu)點:分離效率高、 流場穩(wěn)定、 單根處理量增大且靈活、 液流壓力損失相對較小等。本文基于TRIZ發(fā)明問題解決理論,分析了復合式旋流器分離性能影響因素,并采用Pro/Innovator 軟件針對底流與溢流的分離技術沖突提出最終解決方案。針對最終解決方案,本文進行了系統(tǒng)機械結構設計,優(yōu)選的設計了旋轉柵、溢流嘴、靜態(tài)旋流分離體等結構,提出了合理的電機驅動連接方式,選擇了合理的驅動電機。采用Solidworks三維制圖軟件完成了一種新型復合式旋流器的立體圖形繪制,并采用了AutoCAD繪制了二維工程圖紙。在本次畢業(yè)設計中我學到了很多東西,如TRIZ發(fā)明問題解決理論及相應的算法和設計軟件,機械結構設計,電機的選型,二、三維制圖軟件的使用。但由于時間關系,設計中還有許多地方未能充分考慮,如電機轉速與液體分離效率的關系等,希望能在未來進一步深入探索。參考文獻1 Gay J C , Bezard C , Schummer P. Rotary Cyclone Will Improve Oily Water Treatment and Reduce Space Requirement Weighth on Offshore Platforms C , SPE16571, 1987:1 20 12 Jones P S. A Field Comparison of Static and Dynamic Hydrocyclones C . SPE Production & Facilities, May 1993:84 901.3 關于MATRIZ的創(chuàng)始人國際TRIZ協(xié)會中文網站2012-10-104 蔣明虎,王尊策,劉曉敏等油水分離用復合旋流器結構設計J流體機械,2002,30(6):17-195 許妍霞,宋興福,吳亞洲等. 溢流口結構對水力旋流器性能影響的模擬分析J. 華東理工大學學報. 2012,38(3):271-277.6 李楓. 復合式水力旋流器結構優(yōu)化設計及性能研究M. 大慶石油學院. 2003.7 張長高. 水動力學M. 北京: 高等教育出版社,1993.致 謝本課題是在xxx老師的精心指導和熱情關懷下完成的,在此謹向導師表示最衷心的感謝和最誠摯的敬意。本次畢業(yè)設計是在指導老師xx的細心指導下完成的。在我三個月的畢業(yè)設計中,正是他們以無私的關懷、忘我的研究精神和嚴謹?shù)膶W術作風關心影響和教導了我,將令我終身受益。從課題的開始到最后,無處不凝聚著xxx老師的心血。xxx老師在學習和生活方面給予了我極大的關心和支持。同時老師嚴謹?shù)?、科學的學術作風,前瞻的科研眼光、敏銳的思維、淵博的知識、豐富的閱歷、謙虛大度的胸懷、獨特的為人處世原則,忘我工作的奉獻精神是永遠值得我學習的。在此謹向xxx老師表示衷心的感謝!感謝應用技術學院的各位老師!在我四年多的求學生涯中,從學習和生活各方面給予我莫大的關懷和幫助。感謝我的大學同學,與他們共同度過這一段難忘的人生旅程,他們?yōu)槲业拇髮W生生活和畢業(yè)設計生活增添了無限色彩。再有要感謝一起學習生活的同學們,與他們的一次次交流使我得以不斷進步和提高。我能夠專心學習,順利完成學業(yè),與我的父母的培養(yǎng)、鼓勵和支持是分不開的,在此向他們表示最誠摯的感謝!感謝文中所引用文獻的所有作者們!再次感謝所有關心、支持和幫助過我的老師、同學和朋友們!23DISTINGUISHED AUTHOR SERIES 58 JULY 1998 STATE OF THE ART OF GAS/LIQUID CYLINDRICAL-CYCLONE COMPACT-SEPARATOR TECHNOLOGY Ovadia Shoham, SPE, U. of Tulsa, and Gene E. Kouba, SPE, Chevron Petroleum Technology Co. SUMMARY The petroleum industry has relied mainly on conventional, vessel- type separators to process wellhead production of oil/water/gas flow. However, economic and operational pressures continue to force the industry to seek less expensive and more efficient separa- tion alternatives in the form of compact separators, especially for offshore applications. Compared with vessel-type separators, com- pact separators, such as the gas/liquid cylindrical cyclone (GLCC), are simple, low-cost, low-weight separators that require little main- tenance and are easy to install and operate. However, the inability to predict GLCC performance adequately has inhibited its wide- spread deployment. Current R however, we have not dis- cussed them here because little or no performance information is available. These include a variable inlet-slot area and the config- urations of the gas and liquid outlets. SIMULATION In the past, performance predictions of GLCC separators have been carried out on the basis of experience, rules of thumb, and empirical correlations. These methods are limited in their ability to be extrapolated to different flow conditions and untried appli- cations. Currently, efforts are under way to develop mechanistic models for the GLCC and conduct computational fluid dynamic (CFD) simulations. Mechanistic modeling offers a practical approach to GLCC design and performance prediction. Simplifying assumptions are used, but, ideally, the models still capture enough of the fundamental physics of the problem to allow interpolation and extrapolation to different fluid-flow conditions. CFD simulations predict details of the com- plex hydrodynamic-flow behavior in the GLCC, including flow field, holdup distribution, and trajectories of discrete particles of the dis- persed phase. While well-suited for local simulation of single-phase or dilute dispersion flows, current CFD simulators cannot yet handle the complexities of the full range of multiphase flow. Furthermore, CFD models of large piping systems that include the GLCC typical- ly are too unwieldy to be practical for design purposes. Because mechanistic models are greatly simplified, they are not as detailed, rigorous, or accurate as CFD models. However, mech- anistic modeling has many advantages: speed of setup and compu- tation, ability to model an entire system, and suitability for PC operation. Consequently, these models are more accessible to engi- neers as a design tool than are CFD models. Mechanistic Modeling. The ultimate aim of modeling work to date has been to predict the operating envelope for the GLCC with respect to liquid carry-over in the gas stream and gas carry-under in the liquid stream. Each fluid-flow path has its own particular set of calculations. The starting point for either calculation path is the global distribution of gas and liquid in the GLCC, namely, the equilibrium liquid level. Equilibrium Liquid Level. The equilibrium liquid level in the GLCC is determined by the pressure drop between the gas and liq- uid outlets. Because the frictional losses in the GLCC are low, the equilibrium liquid level is a reasonable indication of the amount of liquid in the GLCC. The model is based on a pressure balance on the gas and liquid legs. Ref. 2 gives details of this model. Vortex Shape and Location. The shape and location of the vortex are important for prediction of both liquid carry-over and gas carry- under. The vortex model assumes rigid-body rotation (i.e., a linear tangential-velocity profile in the radial direction). 2 Coupling the cal- culations for equilibrium liquid level and vortex shape makes deter- mination of the location of the vortex and the height of the vortex crown possible. This model of the global distribution of gas and liq- uid provides the groundwork for the performance models. Liquid Carry-Over. Liquid carry-over in the gas stream is largely dependent on the flow pattern in the upper part of the GLCC. Flooding may occur in the GLCC at high liquid levels and low gas rates, produc- ing bubbly flow. The unstable liquid oscillations, characteristic of churn flow at moderate gas rates, may splash liquid into the gas outlet. Liquid can also be carried out in droplets at the onset of annular mist flow at high gas rates. At very high gas rates, the centrifugal force of the swirling gas pushes the liquid to the wall of the pipe, where it may form an upward-spiraling continuous ribbon of liquid. At present, the onset of liquid carry-over is predicted for low to moderately high gas rates. The key to onset of liquid carry-over has been to predict accurately the maximum liquid holdup (volume frac- tion) occurring in the upper part of the GLCC under zero-net-liquid- flow conditions and its effect on the pressure balance between the gas and liquid legs. Fig. 2 compares model predictions with experimen- tal results in plots of the maximum liquid holdup in the upper GLCC region (i.e., zero-net-liquid-flow holdup, y L0 , vs. the superficial gas velocity, v gs , in the GLCC). 2 Additional data collected for a range of liquid viscosities from 1 to 10 cp showed negligible effect on the zero-net-liquid-flow holdup. 6 Once the maximum liquid holdup Fig. 2Zero-net-liquid-flow holdup in air/water system. 2 Fig. 3Operational envelope for liquid carry-over in a 3-in. GLCC operated with air and water. 2 v gs , ft/sec y L0 v gs , ft/sec v Ls , ft/sec JULY 1998 61 allowed in the upper part of the GLCC is known for a given gas rate, the pressure-balance calculation is used to determine the liquid rate required to achieve this holdup and initiate liquid carry-over. Fig. 3 compares the experimental and predicted operational envelopes for a 3-in. laboratory GLCC in a loop configuration, operated with air and water at low pressures. 2 The operational envelopes are presented in terms of superficial liquid velocity, v Ls , vs. superficial gas velocity, v gs , in the GLCC. The agreement of model predictions with the data is very good. Comparison with data from Ref. 6 showed that the model seems to capture the phys- ical phenomena and predict well the reduction of the operational envelope with increasing liquid viscosity. Future improvements to liquid-carry-over modeling will include expansion to different operational conditions (e.g., high gas rates) as well as prediction of the quantity of liquid carry-over and dynamic responses to flow-rate surges. Gas Carry-Under. Three mechanisms have been identified as possi- ble contributors to gas carry-under in the liquid stream: (1) shallow bubble trajectories prevent small bubbles from escaping to the gas-core filament, (2) rotational-flow instability causes helical whipping and breaking of the gas-core filament near the liquid exit, and (3) liquid- rate surges can produce a concentrated cloud of bubbles that hinders bubble migration to the gas core. Currently, attempts to predict gas carry-under have focused only on the first mechanism, discussed next. Bubble-Trajectory Analysis. This analysis is carried out by assuming successive steady-state force-balance calculations on a bubble. The forces acting on the bubbles are centrifugal, buoyancy, and drag. Recent work compared bubble trajectories predicted by the mechanistic model and CFD simulations for the same flow con- ditions. 9 Fig. 4, where x/d and r/R are the dimensionless axial and radial coordinates below the GLCC inlet, respectively, provides an example of such a comparison. The figure shows good agreement with respect to the trend and absolute value. Bubble-trajectory analysis 10 was used to predict the onset of gas carry-under and separation efficiency for different sized bubbles in a manner similar to the liquid/liquid analysis carried out for hydro- cyclones. 11 The minimum diameter of the bubble that always migrates from the GLCC wall to the gas core and thus is separated (i.e., d 100 ) was predicted. Fig. 5 shows the effect of the ratio of the tangential velocity at the inlet slot to the axial velocity in the GLCC (namely, v tis /v z ) on d 100 . The continuous line represents the regres- sion curve of the simulation results. For these conditions, d 100 decreases with increasing v tis /v z ratio up to about 100 and remains approximately constant for larger values of this ratio. The region from the bottom of the vortex to the liquid exit is where small bubbles are separated and captured by the gas-core fil- ament. Because vortex height is a strong function of tangential-inlet velocity and bubble-trajectory length diminishes with vortex height, an optimum tangential-inlet velocity must exist that mini- mizes gas carry-under. A tangential-inlet velocity that is too low produces insufficient centrifugal and buoyancy forces, whereas the available length for bubble trajectory is too short with a tangential- inlet velocity that is too high. As yet, a general scheme to determine optimum velocity has not been presented. Work is now in progress to develop the methodology to predict overall separation efficiency in a GLCC. This requires two addition- Fig. 4Bubble-trajectory comparison of mechanistic model and CFX simulations with v Ls = 0.25 ft/sec, v gs = 10 ft/sec, v tis /v z = 34, d= 3 in., and d b = 20 m. 9 Fig. 5Effect of tangential-/axial-velocity ratio on d 100 for a 3-in. GLCC operated with air and water at atmospheric conditions. 10 v Ls = 0.05 ft/sec v Ls = 0.1 ft/sec v Ls = 0.5 ft/sec 100 80 60 40 20 0 d 100 , m v tis /v z 62 JULY 1998 al pieces of information: the amount of gas entrained and the bub- ble-size distribution. Coupling these to the bubble-capture efficien- cy ultimately will enable prediction of overall separation efficiency. CFD Simulation. Verifying mechanistic models with real data is not always practical or possible. CFD simulations are used to validate and improve the mechanistic models. CFD simulations for the GLCC can be lumped into two broad categories: single- phase flow with particle tracking and two-phase flow. Single-Phase Flow and Particle Tracking. The simplest and most widely used approximation for CFD simulation of two-phase flow is to consider single-phase flow populated with particles (bub- bles) that neither interact with each other nor influence the flow. This, in effect, is simply solving for a single-phase-flow field and superimposing particle-trajectory tracking. CFD and bubble-trajectory analysis were used to investigate the sensitivity of gas separation to bubble-size distribution. 12,13 Two- and three-dimensional (2D and 3D) simulations 14 were carried out with CFX, a commercially available CFD code. 15 The authors con- cluded that the axisymmetric simulations (2D) gave good results compared with the 3D simulations. Fig. 6 compares single-phase CFD simulations with experimental data. 16 Both the data and CFD simulations demonstrated that the tangential-velocity distribution is dominated by a forced vortex, confirming this assumption in the mechanistic models. Furthermore, the CFD simulations also veri- fied the mechanistic model with respect to axial decay of tangen- tial-velocity distribution (5 to 7% L/d decay). The simulations in Ref. 14 also predicted the existence of an axial-flow-reversal region where the flow is downward near the wall and upward in the center core. The bubble-capture radius, R cap , is defined as the radial location where the axial-velocity component is zero as the flow reverses from downward to upward. Bubbles that migrate into the capture-radius area are separated and pushed upward into the upper part of the GLCC. Fig. 7 shows the capture radius as a function of the tangential-/axial-velocity ratio, v tis /v z , and axial location below the inlet. The results indicate a rapid decline of the capture radius as the velocity ratio decreases below 10. The cap- ture radius and the reversal in the axial-velocity profile recently have been incorporated into the mechanistic model. 9 Two-Phase Flow. Actual two-phase-flow CFD simulation is still in its infancy. Such simulations should predict the influence of the dis- persed phase on the flow of the continuous phase and the interface between the two phases. Recent two-phase-flow CFD simulation work has proceeded on two fronts: with CFX 14,17 and through development of a dedicated internal code. 17 The two-phase simula- tions provided details of the velocity field and gas-void-fraction dis- tribution. The simulations also provided the free interface between the gas and liquid phases (vortex), which compared favorably with experimental data. Fig. 8, which shows the gas-void-fraction distri- bution in the GLCC, gives an example of the results obtained. The figure reveals that the gas-void-fraction values at the top and bottom of the GLCC are nearly unity and nearly zero, respectively, indicat- ing efficient separation. For the first time, results have predicted the gas-core-filament diameter accurately and provided insight into the mechanism for its formation (continuous entrainment and radial migration of small gas bubbles into the gas core).* Fig. 6Axisymmetric-tangential-velocity prediction vs. data for a 7.5-in. GLCC operated with air and water at atmospheric con- ditions. 14 Fig. 7Variation of capture radius with tangential-/axial-veloci- ty ratio. 14 v tis /v z R cap /R 6 in. 12 in. Fig. 8Void-fraction distribution for a 7.5-in. GLCC operated with air and water at atmospheric conditions. 14 =0.98 =0.00 V t , ft/sec *Unpublished results, F.M. Erdal, U. of Tulsa, Tulsa, Oklahoma (1998). JULY 1998 63 APPLICATIONS A variety of GLCC applications have requirements that may vary from partial to complete gas/liquid separation. Recent technologi- cal development has helped increase deployment of GLCC separa- tor systems in the industry. Successful Applications. The GLCC modeling effort to date has resulted in successful deployment of the GLCC in a variety of selected applications, as discussed next. Multiphase Measurement Loop. Most of GLCCs deployed to date (approaching 100) have been configured in a multiphase metering loop. Fig. 9 is a schematic of the GLCC in a multiphase metering loop, first introduced by Liu and Kouba, 18 and Fig. 10 shows a GLCC field prototype operated by Chevron in Oklahoma. This type of measurement-loop configuration affords several advantages over either conventional separation with single-phase measurement or nonseparating multiphase meters. The loop con- figuration is somewhat self-regulating, which can reduce or even eliminate the need for active level control. The compactness of the GLCC allows the measurement loop to weigh less, occupy less space, and maintain less hydrocarbon inventory than a conven- tional test separator. The advantages of a GLCC metering loop over a nonseparating three-phase meter include much improved meter- ing accuracy of individual phases over a wider range of flow rates and significantly lower cost. For flow conditions where gas carry-under cannot be prevented, a three-phase metering system is required on the liquid leg. In gen- eral, the accuracy of a multiphase meter on the liquid leg benefits significantly from removal of some of the gas. Most multiphase meters have an upper limit on the gas volume fraction allowed through the meter to maintain their accuracy specifications. Apart from improved accuracy, partial gas separation provides the addi- tional benefit of a smaller, less expensive multiphase meter. For multiphase meters (whose price scales directly with size), the cost savings of using a smaller meter in conjunction with a GLCC can be four times the cost of the GLCC. Partial Processing (Separation). A compact GLCC is often very appropriate for applications where only partial separation of gas from liquid is required. One such application is the partial separa- tion of raw gas from high-pressure wells to use for gas lift of low- pressure wells. The GLCC was a central feature in an offshore raw- gas-lift system designed by Chevron that allowed elimination of gas compressor and lift-gas pipelines. 19 Compact Separation Systems. Compact separation systems are a key element in reducing cost of production operations through reduction of size and weight. Furthermore, separating a significant Fig. 10Chevron-operated GLCC field prototype. Fig. 9GLCC in a multiphase metering loop configuration. 64 JULY 1998 portion of the gas reduces fluctuations in the liquid flow and may result in improved performance of other downstream separation devices, such as a wellhead desanding hydrocyclone. Chevron is investigating the series combination of a GLCC with a free-water- knockout hydrocyclone and a deoiling hydrocyclone in an effort to improve discharge-water quality. The GLCC was used to control gas/liquid ratio of a two-phase- flow mixture entering a multiphase pump to improve pumping effi- ciency. 20 Another study showed several combinations of GLCC and jet pumps that could be used to extract energy from high-pressure multiphase wells to enhance production from low-pressure wells. 21 Enhancement of Existing Separators. Cyclone separation already has proved useful in internal separation devices for large horizontal separators. The GLCC may also function as a useful external preseparation device to enhance performance of existing horizontal separators (Fig. 11). By separating part of the gas, the separator level might be raised to increase residence time without encountering the mist-flow regime in the vessel. Petrobrs Brazil has retrofitted an existing separator in one of its fields with a GLCC preseparator. 1 Another company is evaluating enhancement of their existing test separators with GLCC preseparation. Commercial GLCC Products. Most GLCCs to date have been field fabricated for relatively straightforward applications. Applications of and demand for GLCCs are growing rapidly. Several vendor compa- nies are in the process of incorporating the GLCC into their com- pact-separator product line. Also, as mentioned before, a commercial multiphase metering system that uses a GLCC and a second-stage horizontal separator is now available. Greater commercialization will be needed to meet the growing industry demand. Future Applications. Current successful GLCC applications lend confidence to future potential GLCC configurations. This requires enhancement of the existing models and is currently under way. The following are two of the most compelling applications. Subsea Production. The biggest impact to the petroleum industry from GLCC technology may be in subsea separation applications. Conclusions in Ref. 22 state that “wellhead separation and pumping is the most thermodynamically efficient method for wellstream transfer over long distances, particularly from deep water.” In a recent study, Prado et al. 23 argued that this is applicable to shallow and moderately deep waters. Undoubtedly, development of marginal offshore fields will depend on development of efficient and economical technologies. Subsea applications require a high degree of confidence in separator design and performance while demanding that the equipment be sim- ple, compact, robust, and economical. Here again, the virtues of the GLCC should place it in good standing among competing technologies. Production Separation. Vertical separators with tangential inlets are fairly common in the oil field. These predecessors of the GLCC are often big and bulky, with perpendicular low-velocity tangential pipe inlets. The tangential velocities are usually so low that gravi- tational, centrifugal, and buoyancy forces contribute approximate- ly equally to separation. Technological developments in both GLCC hardware and software should reduce the size and improve the performance of vertical separators. One challenge in optimizing the size of a GLCC for p
收藏