20米自動(dòng)伸縮門(mén)設(shè)計(jì)【含CAD圖紙】
20米自動(dòng)伸縮門(mén)設(shè)計(jì)【含CAD圖紙】,含CAD圖紙,20,自動(dòng),伸縮,設(shè)計(jì),cad,圖紙
中期情況檢查表 學(xué)院名稱(chēng): 檢查日期: 學(xué)生姓名 專(zhuān) 業(yè) 指導(dǎo)教師 設(shè)計(jì)(論文)題目20米自動(dòng)伸縮門(mén)設(shè)計(jì)工作進(jìn)度情況 已經(jīng)對(duì)自動(dòng)伸縮門(mén)的總體結(jié)構(gòu)有了一定的了解,對(duì)減速器的傳動(dòng)方案做出選擇并進(jìn)行了設(shè)計(jì)計(jì)算,采用了二級(jí)圓錐-圓柱齒輪減速器實(shí)現(xiàn)傳動(dòng)??刂葡到y(tǒng)已選擇為單片機(jī)控制系統(tǒng),現(xiàn)正在對(duì)其原理圖進(jìn)行設(shè)計(jì)并對(duì)對(duì)減速器設(shè)計(jì)進(jìn)行驗(yàn)證。是否符合任務(wù)書(shū)要求進(jìn)度是 能否按期完成任務(wù)能 工作態(tài)度情況(態(tài)度、紀(jì)律、出勤、主動(dòng)接受指導(dǎo)等)對(duì)待畢業(yè)設(shè)計(jì)的態(tài)度較認(rèn)真,按時(shí)完成每周任務(wù),有問(wèn)題及時(shí)向老師請(qǐng)教,與老師進(jìn)行交流,并虛心接受老師的建議,遵守紀(jì)律,按時(shí)出勤。質(zhì)量評(píng)價(jià)(針對(duì)已完成的部分)完成的畢業(yè)設(shè)計(jì)包括論文及圖紙,設(shè)計(jì)計(jì)算過(guò)程均為自己獨(dú)立完成。雖然存在一些小問(wèn)題,但總體來(lái)說(shuō),設(shè)計(jì)質(zhì)量還是可以的,確實(shí)認(rèn)真做了工作。存在問(wèn)題和解決辦法 對(duì)圖紙的一些規(guī)定還不熟悉,存在一些問(wèn)題,但通過(guò)一些制圖參考文件的參考能進(jìn)行改進(jìn)。對(duì)用單片機(jī)進(jìn)行系統(tǒng)控制還無(wú)思路,可以去查閱相關(guān)資料來(lái)自我啟發(fā)。 檢查人簽名 教學(xué)院長(zhǎng)簽名 0 任 務(wù) 書(shū) 學(xué) 院(系): 專(zhuān) 業(yè): 學(xué) 生 姓 名: 學(xué) 號(hào): 設(shè)計(jì)(設(shè)計(jì))題目:20米自動(dòng)伸縮門(mén)設(shè)計(jì)起迄日期: 指導(dǎo)教師: 教研室主任: 發(fā)任務(wù)書(shū)日期: 任 務(wù) 書(shū)1設(shè)計(jì)的背景:本設(shè)計(jì)所設(shè)計(jì)的是20米自動(dòng)伸縮門(mén),隨著科技的提高與經(jīng)濟(jì)的發(fā)展,各大、中、小型企事業(yè)單位(包括企業(yè)、研究單位、學(xué)校等)的大門(mén)口都用上了自動(dòng)伸縮門(mén)。其樣式新穎、美觀、操作方便和功能更多(防盜、在上面顯示通告、遇故自動(dòng)停止等)。目前,自動(dòng)門(mén)設(shè)備大部分依靠進(jìn)口,國(guó)內(nèi)企業(yè)也開(kāi)始試制自動(dòng)門(mén)的機(jī)電梁系統(tǒng)。1994年中國(guó)建設(shè)部JG/T 3015.1、294推拉自動(dòng)門(mén)、平開(kāi)自動(dòng)門(mén)發(fā)布,對(duì)規(guī)范自動(dòng)門(mén)市場(chǎng)起到了一定的作用。隨著改革開(kāi)放的加速和國(guó)際貿(mào)易的擴(kuò)大,到目前包括日本、歐美等直接進(jìn)口在內(nèi),已有近70個(gè)品牌的自動(dòng)門(mén)機(jī)電梁設(shè)備進(jìn)入中國(guó)市場(chǎng)。除推拉門(mén)和平開(kāi)門(mén)外,弧形門(mén)和旋轉(zhuǎn)門(mén)等各種型號(hào)的自動(dòng)門(mén)數(shù)量也日益增大,目前年需求量約有3萬(wàn)臺(tái),而且每年以30%的幅度遞增。2設(shè)計(jì)(設(shè)計(jì))的內(nèi)容和要求:內(nèi)容:1)完成自動(dòng)伸縮門(mén)減速器的設(shè)計(jì),確定電動(dòng)機(jī)的類(lèi)型,計(jì)算傳動(dòng)裝置的運(yùn)動(dòng)、動(dòng)力參數(shù),根據(jù)各參數(shù),對(duì)各零件做強(qiáng)度校核。確定減速器類(lèi)型。2)完成鏈傳動(dòng)設(shè)計(jì),確定傳動(dòng)方案,完成傳動(dòng)的設(shè)計(jì)。 要求:1) 有關(guān)文獻(xiàn)研讀2) 設(shè)計(jì)說(shuō)明書(shū)1份,20000字,打印裝訂成冊(cè)3) 譯文5000字4) 利用AutoCAD畫(huà)圖,圖紙數(shù)量折合成零號(hào)圖不少于3張。3主要參考文獻(xiàn):1 陳秀寧.主編.機(jī)械設(shè)計(jì)課程設(shè)計(jì),浙江大學(xué)出版社,20072 杜白石.機(jī)械設(shè)計(jì)課程設(shè)計(jì),西北農(nóng)業(yè)大學(xué),19933 龔桂義.機(jī)械設(shè)計(jì)課程設(shè)計(jì)指導(dǎo)書(shū),高等教育出版社19924 邱宣懷.主編.機(jī)械設(shè)計(jì)(第四版),高等教育出版社,19975 廖林清等.機(jī)械設(shè)計(jì)方法學(xué),重慶大學(xué)出版社,1996.84設(shè)計(jì)(設(shè)計(jì))進(jìn)度計(jì)劃(以周為單位):1周 設(shè)計(jì)調(diào)研2周 設(shè)計(jì)調(diào)研3周 總體方案設(shè)計(jì)4周 運(yùn)動(dòng)動(dòng)力參數(shù)計(jì)算5周 零部件設(shè)計(jì)計(jì)算6周 總裝配圖繪制7周 總裝配圖繪制8周 零部件圖繪制9周 零部件圖繪制10周 控制電路設(shè)計(jì)11周 外文翻譯12周 撰寫(xiě)設(shè)計(jì)13周 撰寫(xiě)設(shè)計(jì)、準(zhǔn)備答辯教研室審查意見(jiàn): 室主任簽名: 2014 年 2 月 21 日學(xué)院審查意見(jiàn): 教學(xué)院長(zhǎng)簽名: 年 月 日2 外文翻譯 Artificial hip joint學(xué)生姓名 班 級(jí) 學(xué)院名稱(chēng) 專(zhuān)業(yè)名稱(chēng) 指導(dǎo)教師 1. IntroductionIt has been recognised by a good number of researchers that the computation of the pressure distribution and contact area of artificial hip joints during daily activities can play a key role in predicting prosthetic implant wear 1, 2, 3 and 4. The Hertzian contact theory has been considered to evaluate the contact parameters, namely the maximum contact pressure and contact area by using the finite element method 1 and 2. Mak and his co-workers 1 studied the contact mechanics in ceramic-on-ceramic (CoC) hip implants subjected to micro-separation and it was shown that contact stress increased due to edge loading and it was mainly dependent on the magnitude of cup-liner separation, the radial clearance and the cup inclination angle 3 and 4. In fact, Hertzian contact theory can captured slope and curvature trends associated with contact patch geometry subjected to the applied load to predict the contact dimensions accurately in edge-loaded ceramic-on-ceramic hips 5. Although the finite element analysis is a popular approach for investigating contact mechanics, discrete element technique has also been employed to predict contact pressure in hip joints 6. As computational instability can occur when the contact nodes move near the edges of the contact elements, a contact smoothing approach by applying Gregory patches was suggested 7. Moreover, the contributions of individual muscles and the effect of different gait patterns on hip contact forces are of interest, which can be determined by using optimisation techniques and inverse dynamic analyses 8 and 9. In addition, contact stress and local temperature at the contact region of dry-sliding couples during wear tests of CoC femoral heads can experimentally be assessed by applying fluorescence microprobe spectroscopy 10. The contact pressure distribution on the joint bearing surfaces can be used to determine the heat generated by friction and the volumetric wear of artificial hip joints 11 and 12. Artificial hip joint moment due to friction and the kinetics of hip implant components may cause prosthetic implant components to loosen, which is one of the main causes of failure of hip replacements. Knee and hip joints moment values during stair up and sit-to-stand motions can be evaluated computationally 13. The effect of both body-weight-support level and walking speed was investigated on mean peak internal joint moments at ankle, knee and hip 14. However, in-vivo study of the friction moments acting on the hip demands more research in order to assess whether those findings could be generalised was carried out 15.The hypothesis of the present study is that friction-induced vibration and stick/slip friction could affect maximum contact pressure and moment of artificial hip joints. This desideratum is achieved by developing a multibody dynamic model that is able to cope with the usual difficulties of available models due to the presence of muscles, tendons and ligaments, proposing a simple dynamic body diagram of hip implant. For this purpose, a cross section through the interface of ball, stem and lateral soft and stiff tissues is considered to provide the free body diagram of the hip joint. In this approach, the ball is moving, while the cup is considered to be stationary. Furthermore, the multibody dynamic motion of the ball is formulated, taking the friction-induced vibration and the contact forces developed during the interaction with cup surface. In this study, the model utilises available information of forces acting at the ball centre, as well as angular rotation of the ball as functions of time during a normal walking cycle. Since the rotation angle of the femoral head and their first and second derivatives are known, the equation of angular momentum could be solved to compute external joint moment acting at the ball centre. The nonlinear governing equations of motion are solved by employing the adaptive RungeKuttaFehlberg method, which allows for the discretisation of the time interval of interest. The influence of initial position of ball with respect to cup centre on both maximum contact pressure and the corresponding ball trajectory of hip implants during a normal walking cycle are investigated. Moreover, the effects of clearance size, initial conditions and friction on the system dynamic response are analysed and discussed throughout this work.2. Multibody dynamic model of the artificial hip jointThe multibody dynamic model originaly proposed by Askari et al. 16 has been considered here to address the problem of evaluating the contact pressure and moment of hip implants. A cross section A-A of a generic configuration of a hip joint is depicted in the diagram of in Fig. 1, which represents a total hip replacement. Fig. 1 also shows the head and cup placed inside of the pelvis and separated from stem and neck. The forces developed along the interface of the ball and stem are considered to act in such a way that leads to a reaction moment, M. This moment can be determined by satisfying the angular motion of the ball centre during a walking cycle. The available data reported by Bergmann et al. 17 is used to define the forces that act at the ball centre. This data was experimentally obtained by employing a force transducer located inside the hip neck of a live patient. The information provided deals with the angular rotation and forces developed at the hip joint. Thus, the necessary angular velocities and accelerations can be obtained by time differentiating the angular rotation. Besides the 3D nature of the global motion of the hip joint, in the present work a simple 2D approach is presented, which takes into account the most significant hip action, i.e. the flexion-extension motion. With regard to Fig. 2 the translational and rotational equation of motion of the head, for both free flight mode and contact mode, can be written by employing the NewtonEulers equations 18 and 19, yieldingequation(1)MOk=Ik,MO=Mk(Rj)nFPjt0Mk0equation(2)FX=mx,FX=fx+(FPjt+FPjn)i0fx0equation(3)FY=my,FY=fy+(FPjn+FPjt)jmg0fy0where FPjn and FPjt denote the normal and tangential contact forces developed during the contact between the ball and cup, as it is represented in the diagram of Fig. 3. In Eqs. (1), (2) and (3), x, y and are the generalised coordinates used to define the systems configuration. In turn, variable m and I are the mass and moment of inertia of ball, respectively. The external generalised forces are denoted by fx, fy and M and they act at the centre of the ball as it is shown in Fig. 3. The gravitational acceleration is represented by parameter g, Rj is the ball radius and represents relative penetration depth between the ball and cup surfaces.Fig. 1. A schematic of the artificial hip implant with the cross section A-A (Left figure), and the head and cup separated from the neck and stem through the cross section A-A (Right figure).Figure options Download full-size image Download high-quality image (142 K) Download as PowerPoint slideFig. 2. A schematic of the head and cup interaction observed in the Sagittal plane.Figure options Download full-size image Download high-quality image (87 K) Download as PowerPoint slideFig. 3. Free body diagram of ball and corresponding external, internal and body forces and moment.Figure options Download full-size image Download high-quality image (87 K) Download as PowerPoint slideTheDownload as PowerPoint slideThe penetration depth can be expressed as 20equation(4)=r(RbRj)=r(RbRj)in which Rb denotes the cup radius and (RbRj) represents the joint radial clearance, which is a parameter specified by user.In the present study, the cup is assumed to be stationary, while the head describes the global motion. With regard to Fig. 2, it can be observed that Oj and Ob denote the head and cup centres, respectively. While Pj and Pb represent the contact points on the head and cup, respectively. The magnitude and orientation of the clearance vector are denoted by r and , respectively. In general, r and can be expressed as functions of the generalised coordinates used to describe the configuration of multibody mechanical system. The normal and tangential unit vectors at the contact point can be written asequation(5)n=cosi+sinjequation(6)t=sini+cosjIn order to compute the normal contact and tangential forces, it is first necessary to evaluate the relative tangential and normal velocities at the contact points, which can be obtained as follows: 17equation(7)vpj/pb=rn+(r+Rjj)t=vnn+vttwhere vnvn and vtvt are module of the normal and tangential velocities, respectively. Thus, Eqs. (2) and (3) can be re-written as follows:equation(8)m00mxy=FXFYUsing now the concept of the state space representation, the second order equations of motion (8), can be expressed as a first order equation set asequation(9)z=H(z)where z=z1z2z3z4=xyxy and H(z)H(z) is expressed as follows:equation(10)z=z1z2z3z4=z3z4FX(z)FY(z)It must be mentioned that the r, and their time derivatives can be obtained with respect to state space parameters as follows:equation(11)=atan(z2z1)equation(12)r=z12+z22equation(13)=z2z3+z1z4z12+z22z12equation(14)r=z1z3+z2z4z12+z22It is known that the evaluation of the contact forces developed during an impact event plays a crucial role in the dynamic analysis of mechanical systems 21, 22 and 23. The contact forces must be computed by using a suitable constitutive law that takes into account material properties of the contacting bodies, the geometric characteristics of impacting surfaces and impact velocity. Additionally, the numerical approach for the calculation of the contact forces should be stable in order to allow for the integration of the mechanical systems equations of motion 24. Different constitutive laws are suggested in the literature, being one of the more prominent proposed by Hertz 25. However, this law is purely elastic in nature and cannot explain the energy loss during the impact process. Thus, Lankarani and Nikravesh 26 overcame this difficulty by separating the contact force into elastic and dissipative components asequation(15)Fpjn=(Kn+D)nRegarding Lankarani and Nikravesh model, normal contact force on the head is expressed asequation(16)Fpjn=K3/2(1+3(1ce2)4()nwhere and () are the relative penetration velocity and the initial impact velocity, respectively, and ce is the coefficient of restitution. The generalised stiffness parameter K depends on the geometry and physical properties of the contacting surfaces, which for two internal spherical contacting bodies with radii Ri and Rj can be expressed as 25equation(17)K=43(i+j)(RiRjRiRj)2in which the material properties ii and jj are given byequation(18)z=1z2EzAt this stage, it must be said the use of Eq. (15) is limited by Loves criterion, that is, it is only valid for impact velocities lower than the propagation velocity of elastic waves across the solids 27.It is known that the way in which the friction phenomena are modelled, plays a key role in the systems behaviour 28. In the present study, the tangential friction force are evaluated by using a modified Coulomb friction law, which can be expressed as 29 and 30equation(19)Fpjt=(vt)|Fpjn|vt|vt|tThe friction force is described in the sense of Coulombs approach, and is proportional to the magnitude of the normal force developed at the contact points, where the ratio is the coefficient of friction, , which is dependent on the relative tangential velocity. The model considered in reference 17 is employed here for the purpose of evaluating the coefficient of friction, which can be written asequation(20)(vt)=(cfv02(|vt|v0)2+cf)sgn(vt),|vt|v0(cd+(cfcd)exp(|vt|v0)sgn(vt),|vt|v0where is a slop parameter. The first part of friction coefficient function is exhibits a continuous behaviour when the function is close to zero, in order to avoid the numerical instabilities associated with null tangential velocity. Fig. 4 shows the plot of Eq. (20), which represents the Stribeck effect. Thus, it can be stated that with this approach, the stick/slip effect can be taken into account. In fact, the model can represent the dry friction behaviour and address stick/slip phenomenon in relative low velocity case accurately. Moreover, this modified Coulombs friction model can avoid computational instability associated with the change of velocity direction.Fig. 4. Stribeck characteristic for dry friction.Figure options Download full-size image Download high-quality image (102 K) Download as PowerPoint slideNormal and tangential forces described above are present if the system isin contact situation, which means detecting impact or contact is one important step. Moreover, to compute the contact force, the initial impact velocity has to be calculated as an initial condition for following regimes, which could be in contact or in free flight, the following condition should be checked during the solution process by progressing time. Therefore, a contact event is detected when the following condition is verifiedequation(21)(ti)0Indeed, the precise instant i 開(kāi)題報(bào)告 課題名稱(chēng):20米自動(dòng)伸縮門(mén)設(shè)計(jì)學(xué)生姓名: 學(xué)號(hào): 指導(dǎo)教師: 所在學(xué)院: 專(zhuān)業(yè)名稱(chēng): 說(shuō) 明1根據(jù)學(xué)院設(shè)計(jì)(設(shè)計(jì))管理規(guī)定,學(xué)生必須撰寫(xiě)設(shè)計(jì)(設(shè)計(jì))開(kāi)題報(bào)告,由指導(dǎo)教師簽署意見(jiàn)、教研室審查,學(xué)院教學(xué)院長(zhǎng)批準(zhǔn)后實(shí)施。2開(kāi)題報(bào)告是設(shè)計(jì)(設(shè)計(jì))答辯委員會(huì)對(duì)學(xué)生答辯資格審查的依據(jù)材料之一。學(xué)生應(yīng)當(dāng)在設(shè)計(jì)(設(shè)計(jì))工作前期內(nèi)完成,開(kāi)題報(bào)告不合格者不得參加答辯。3設(shè)計(jì)開(kāi)題報(bào)告各項(xiàng)內(nèi)容要實(shí)事求是,逐條認(rèn)真填寫(xiě)。其中的文字表達(dá)要明確、嚴(yán)謹(jǐn),語(yǔ)言通順,外來(lái)語(yǔ)要同時(shí)用原文和中文表達(dá)。第一次出現(xiàn)縮寫(xiě)詞,須注出全稱(chēng)。4本報(bào)告中,由學(xué)生本人撰寫(xiě)的對(duì)課題和研究工作的分析及描述,沒(méi)有經(jīng)過(guò)整理歸納,缺乏個(gè)人見(jiàn)解僅僅從網(wǎng)上下載材料拼湊而成的開(kāi)題報(bào)告按不合格論。 5課題類(lèi)型填:工程設(shè)計(jì)類(lèi);理論研究類(lèi);應(yīng)用(實(shí)驗(yàn))研究類(lèi);軟件設(shè)計(jì)類(lèi);其它。6課題來(lái)源填:教師科研;社會(huì)生產(chǎn)實(shí)踐;教學(xué);其它 設(shè)計(jì)(設(shè)計(jì))開(kāi)題報(bào)告課題名稱(chēng)20米自動(dòng)伸縮門(mén)設(shè)計(jì)課題來(lái)源社會(huì)生產(chǎn)實(shí)踐課題類(lèi)型工程設(shè)計(jì)類(lèi)1選題的背景及意義:隨著科技的提高與經(jīng)濟(jì)的發(fā)展,各大、中、小型企事業(yè)單位(包括企業(yè)、研究單位、學(xué)校等)的大門(mén)口都用上了自動(dòng)伸縮門(mén)。其樣式新穎、美觀、操作方便和功能更多(防盜、在上面顯示通告、遇故自動(dòng)停止等)。目前,自動(dòng)門(mén)設(shè)備大部分依靠進(jìn)口,國(guó)內(nèi)企業(yè)也開(kāi)始試制自動(dòng)門(mén)的機(jī)電梁系統(tǒng)。1994年中國(guó)建設(shè)部JG/T 3015.1、294推拉自動(dòng)門(mén)、平開(kāi)自動(dòng)門(mén)發(fā)布,對(duì)規(guī)范自動(dòng)門(mén)市場(chǎng)起到了一定的作用。隨著改革開(kāi)放的加速和國(guó)際貿(mào)易的擴(kuò)大,到目前包括日本、歐美等直接進(jìn)口在內(nèi),已有近70個(gè)品牌的自動(dòng)門(mén)機(jī)電梁設(shè)備進(jìn)入中國(guó)市場(chǎng)。除推拉門(mén)和平開(kāi)門(mén)外,弧形門(mén)和旋轉(zhuǎn)門(mén)等各種型號(hào)的自動(dòng)門(mén)數(shù)量也日益增大,目前年需求量約有3萬(wàn)臺(tái),而且每年以30%的幅度遞增。因此,集中精力對(duì)自動(dòng)伸縮門(mén)進(jìn)行研究設(shè)計(jì),有助于營(yíng)造文明企業(yè)、文明工廠、文明城市的氣氛;提高門(mén)內(nèi)安全性,即使深夜遭到破壞或翻越,也會(huì)立刻報(bào)警;同時(shí)對(duì)美化環(huán)境、改善企業(yè)面貌、提升企業(yè)形象也有及其重大的意義。2研究?jī)?nèi)容擬解決的主要問(wèn)題:1)舉例分析比較現(xiàn)在各種清洗機(jī)的優(yōu)勢(shì)及需要改進(jìn)的劣勢(shì);2)舉例出不同的吸附機(jī)構(gòu)并對(duì)其性能進(jìn)行比較,選出最有優(yōu)勢(shì)的吸附機(jī)構(gòu)種類(lèi);3)吸附機(jī)構(gòu)的設(shè)計(jì),計(jì)算相關(guān)參數(shù)值;4)爬行機(jī)構(gòu)的設(shè)計(jì),計(jì)算相關(guān)參數(shù)值;5)清洗機(jī)構(gòu)的設(shè)計(jì);6)清洗機(jī)的三維建模和運(yùn)動(dòng)仿真效果問(wèn)題。3研究方法技術(shù)路線:1、現(xiàn)場(chǎng)考察2、確定總體設(shè)計(jì)方案3、根據(jù)工作載荷、工作要求、工作環(huán)境、安裝要求及尺寸等條件確定電動(dòng)機(jī)的類(lèi)型4、根據(jù)電動(dòng)機(jī)的滿載轉(zhuǎn)速和工作軸轉(zhuǎn)速確定傳動(dòng)裝置的總傳動(dòng)比和傳動(dòng)方案。5、計(jì)算傳動(dòng)裝置的運(yùn)動(dòng)、動(dòng)力參數(shù),根據(jù)各參數(shù),對(duì)各傳動(dòng)零件進(jìn)行設(shè)計(jì)和強(qiáng)度校核6、在總體方案、主要參數(shù)和主要尺寸已擬定的基礎(chǔ)上,完成自動(dòng)伸縮門(mén)減速器的設(shè)計(jì)7、根據(jù)所要實(shí)現(xiàn)的功能完成伸縮門(mén)控制系統(tǒng)的設(shè)計(jì)8、設(shè)計(jì)總裝配圖9、拆畫(huà)零件圖10、設(shè)計(jì)控制電路11、整理圖紙資料,撰寫(xiě)設(shè)計(jì)說(shuō)明書(shū)4研究的總體安排和進(jìn)度計(jì)劃:第1周 設(shè)計(jì)調(diào)研第2周 設(shè)計(jì)調(diào)研第3周 總體方案設(shè)計(jì)第4周 運(yùn)動(dòng)動(dòng)力參數(shù)計(jì)算第5周 零部件設(shè)計(jì)計(jì)算第6周 總裝配圖繪制第7周 總裝配圖繪制第8周 零部件圖繪制第9周 零部件圖繪制第10周 控制電路設(shè)計(jì)第11周 外文翻譯第12周 撰寫(xiě)設(shè)計(jì)第13周 撰寫(xiě)設(shè)計(jì)、準(zhǔn)備答辯5主要參考文獻(xiàn):1 陳秀寧.施高義.機(jī)械設(shè)計(jì)課程設(shè)計(jì)(第四版).杭州:浙江大學(xué)出版社,2012.2 杜白石.機(jī)械設(shè)計(jì)課程設(shè)計(jì).甘肅:西北農(nóng)業(yè)大學(xué)出版社,1993.3 龔桂義.機(jī)械設(shè)計(jì)課程設(shè)計(jì)指導(dǎo)書(shū).北京:高等教育出版社1992.4 濮良貴.機(jī)械設(shè)計(jì)(第八版).北京:高等教育出版社,2006.5 廖林清等.機(jī)械設(shè)計(jì)方法學(xué).重慶:重慶大學(xué)出版社,1996.6 甘永立.幾何量公差與檢測(cè).上海:上??茖W(xué)技術(shù)出版社,2001.7 機(jī)械設(shè)計(jì)手冊(cè)編委會(huì).機(jī)械設(shè)計(jì)手冊(cè).北京:機(jī)械工業(yè)出版社,2007.8 朱冬梅.畫(huà)法幾何及機(jī)械制圖.北京:高等教育出版社,1975.9 中華人民共和國(guó)國(guó)家標(biāo)準(zhǔn).機(jī)械制圖.北京:中國(guó)標(biāo)準(zhǔn)出版社,1993.10 張春宜等.減速器設(shè)計(jì)實(shí)例精講.北京:機(jī)械工業(yè)出版社,2009. 11 張毅剛.單片機(jī)原理及應(yīng)用.北京:高等教育出版社,2010.12 Rajput R K. Elements of Mechanical Engineering. Kaston Publ. House,1985指導(dǎo)教師意見(jiàn): 指導(dǎo)教師簽名: 2014 年 月 日教研室意見(jiàn): 通過(guò),同意開(kāi)題 教研室主任簽名: 2014 年 月 日學(xué)院意見(jiàn): 教學(xué)院長(zhǎng)簽名: 2014 年 月 日5
收藏