高中數(shù)學(xué) 第三章 圓錐曲線與方程章末歸納總結(jié)課件 北師大版選修2-1.ppt
《高中數(shù)學(xué) 第三章 圓錐曲線與方程章末歸納總結(jié)課件 北師大版選修2-1.ppt》由會(huì)員分享,可在線閱讀,更多相關(guān)《高中數(shù)學(xué) 第三章 圓錐曲線與方程章末歸納總結(jié)課件 北師大版選修2-1.ppt(64頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
成才之路 · 數(shù)學(xué),路漫漫其修遠(yuǎn)兮 吾將上下而求索,北師大版 · 選修2-1,圓錐曲線與方程,第三章,章 末 歸 納 總 結(jié),第三章,,坐標(biāo)法是研究圓錐曲線問題的基本方法,它是用代數(shù)的方法研究幾何問題. 本章介紹了研究圓錐曲線問題的基本思路,建立直角坐標(biāo)系,設(shè)出點(diǎn)的坐標(biāo),根據(jù)條件列出等式,求出圓錐曲線方程,再通過曲線方程,研究曲線的幾何性質(zhì). 本章內(nèi)容主要有兩部分:一部分是求橢圓、拋物線、雙曲線的標(biāo)準(zhǔn)方程,基本方法是利用定義或待定系數(shù)法來求;另一部分是研究橢圓、拋物線、雙曲線的幾何性質(zhì),并利用它們的幾何性質(zhì)解決有關(guān)幾何問題. 學(xué)習(xí)本章應(yīng)深刻體會(huì)數(shù)形結(jié)合的思想,轉(zhuǎn)化的思想,函數(shù)的思想及待定系數(shù)法等重要的數(shù)學(xué)思想和方法.,對(duì)于圓錐曲線的有關(guān)問題,要有運(yùn)用圓錐曲線定義解題的意識(shí),“回歸定義”是一種重要的解題策略.如(1)在求軌跡時(shí),若所求軌跡符合某種圓錐曲線的定義,則根據(jù)圓錐曲線方程,寫出所求的軌跡方程;(2)涉及橢圓、雙曲線上的點(diǎn)與兩個(gè)焦點(diǎn)構(gòu)成的三角形問題時(shí),常用定義結(jié)合解三角形的知識(shí)來解決;(3)在求有關(guān)拋物線的最值問題時(shí),常利用定義把到焦點(diǎn)的距離轉(zhuǎn)化為到準(zhǔn)線的距離,結(jié)合幾何圖形利用幾何意義去解決.,直線l與圓錐曲線有無公共點(diǎn),等價(jià)于由它們的方程組成的方程組有無實(shí)數(shù)解,方程組有幾組實(shí)數(shù)解,直線l與圓錐曲線就有幾個(gè)公共點(diǎn);方程組沒有實(shí)數(shù)解,直線l與曲線C就沒有公共點(diǎn). (1)有關(guān)弦長問題,應(yīng)注意運(yùn)用弦長公式及根與系數(shù)的關(guān)系; (2)有關(guān)垂直問題,要注意運(yùn)用斜率關(guān)系及根與系數(shù)的關(guān)系,設(shè)而不求,簡(jiǎn)化運(yùn)算.,設(shè)P是拋物線y2=4x上的一個(gè)動(dòng)點(diǎn). (1)求點(diǎn)P到點(diǎn)A(-1,1)的距離與點(diǎn)P到直線x=-1的距離之和的最小值; (2)若B(3,2),求|PB|+|PF|的最小值.,(2)同理|PF|與P點(diǎn)到準(zhǔn)線的距離相等, 過B作BH⊥準(zhǔn)線l于H點(diǎn),交拋物線于P1點(diǎn). ∵|P1H|=|P1F|, ∴|PB|+|PF|≥|P1B|+|P1H|=|BH|=4. ∴|PB|+|PF|的最小值為4.,如圖,已知圓A:(x+2)2+y2=1與點(diǎn)A(-2,0),B(2,0),分別求出滿足下列條件的動(dòng)點(diǎn)P的軌跡方程. (1)△PAB的周長為10; (2)圓P過點(diǎn)B(2,0)且與圓A外切(P為動(dòng)圓圓心); (3)圓P與圓A外切且與直線x=1相切(P為動(dòng)圓圓心).,,(3)依題意,知?jiǎng)狱c(diǎn)P到定點(diǎn)A的距離等于到定直線x=2的距離,故其軌跡為拋物線,且開口向左,p=4.因此其方程為y2=-8x.,已知橢圓3x2+4y2=12,試確定實(shí)數(shù)m的取值范圍,使得對(duì)于直線l:y=4x+m,橢圓上總有兩點(diǎn)A,B關(guān)于直線l對(duì)稱. [分析] 此對(duì)稱問題借助直線與橢圓得到一元二次方程來求解.,[總結(jié)反思] 本題是通過引入變量k并尋求其與E、F坐標(biāo)的關(guān)系,表示出直線EF的斜率,再利用直線AF的斜率與AE的斜率互為相反數(shù)消去參數(shù)k,從而求解.,,三、解答題 6.過雙曲線x2-y2=1上一動(dòng)點(diǎn)Q引直線x+y=2的垂線,垂足為M,求線段QM的中點(diǎn)的軌跡方程.,[總結(jié)反思] 涉及到多動(dòng)點(diǎn)的軌跡問題,要分析主動(dòng)點(diǎn)與從動(dòng)點(diǎn),一般設(shè)主動(dòng)點(diǎn)為(x,y),其他動(dòng)點(diǎn)坐標(biāo)可設(shè)為(x1,y1)等,然后尋求各動(dòng)點(diǎn)的關(guān)系,再選擇用適當(dāng)?shù)姆椒ń鉀Q.,- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
14.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 高中數(shù)學(xué) 第三章 圓錐曲線與方程章末歸納總結(jié)課件 北師大版選修2-1 第三 圓錐曲線 方程 歸納 總結(jié) 課件 北師大 選修
鏈接地址:http://m.appdesigncorp.com/p-1896951.html