九年級數(shù)學上冊 24.3 正多邊形和圓課件 (新版)新人教版.ppt
《九年級數(shù)學上冊 24.3 正多邊形和圓課件 (新版)新人教版.ppt》由會員分享,可在線閱讀,更多相關《九年級數(shù)學上冊 24.3 正多邊形和圓課件 (新版)新人教版.ppt(27頁珍藏版)》請在裝配圖網(wǎng)上搜索。
,正多邊形和圓,,A,B,C,D,E,,,,,,,,,,,,正多邊形: 各邊相等,各角也相等的多邊形叫做正多邊形。 正n邊形:如果一個正多邊形有n條邊,那么這個正多邊形叫做正n邊形。,三條邊相等,三個角也相等(60度)。,四條邊都相等,四個角也相等(90度)。,,,想一想: 菱形是正多邊形嗎?矩形是正多邊形嗎?為什么?,弦相等(多邊形的邊相等) 弧相等— 圓周角相等(多邊形的角相等),,,—多邊形是正多邊形,,,A,B,C,D,,,⌒,⌒,⌒,1,2,3,A,B,C,D,E,證明:∵AB=BC=CD=DE=EA ∴AB=BC=CD=DE=EA ∵BCE=CDA=3AB ∴∠1=∠2 同理∠2=∠3=∠4=∠5 又∵頂點A、B、C、D、E都在⊙O上, ∴五邊形ABCDE是⊙O的內接五邊形.,,4,⌒,⌒,5,⌒,⌒,⌒,⌒,⌒,⌒,⌒,⌒,,.,O,,中心角,半徑R,,,,邊心距r,正多邊形的中心:一個正多邊形的外接圓的圓心.,正多邊形的半徑: 外接圓的半徑,正多邊形的中心角: 正多邊形的每一條 邊所對的圓心角.,正多邊形的邊心距: 中心到正多邊形的一邊 的距離.,.,O,,,,中心角,,,A,B,,G,,,邊心距把△AOB分成 2個全等的直角三角形,設正多邊形的邊長為a,半徑為R,它的周長為L=na.,R,a,例 有一個亭子它的地基是半徑為4m的正六邊形,求 地基的周長和面積(精確到0.1平方米).,.,O,B,C,,,,,,r,R,P,解:,∴亭子的周長 L=6×4=24(m),,正n邊形的一個內角的度數(shù)是____________; 中心角是___________; 正多邊形的中心角與外角的大小關系 是________.,相等,搶答題:,1、O是正 圓與 圓的圓心。,△ABC的中心,它是△ABC的,,,2、OB叫正△ABC的 ,它是正△ABC的 圓的半徑。,,,3、OD叫作正△ABC的 ,它是正△ABC的 圓的半徑。,,,D,外接,內切,半徑,外接,邊心距,內切,4、正方形ABCD的外接圓圓心O叫做 正方形ABCD的,,5、正方形ABCD的內切圓的半徑OE叫做 正方形ABCD的,,,,,A,B,C,D,.O,,,E,中心,邊心距,6、⊙O是正五邊形ABCDE的外接圓,弦AB的 弦心距OF叫正五邊形ABCDE的 , 它是正五邊形ABCDE的 圓的半徑。,,,7、 ∠AOB叫做正五邊形ABCDE的 角, 它的度數(shù)是,,邊心距,內切,中心,72度,8、圖中正六邊形ABCDEF的中心角是 它的度數(shù)是,,,9、你發(fā)現(xiàn)正六邊形ABCDEF的半徑與邊長具有 什么數(shù)量關系?為什么?,B,A,∠AOB,60度,1、正多邊形的各邊相等,2、正多邊形的各角相等,四、正多邊形的性質:,,,,3、正多邊形都是軸對稱圖形,一個正n邊形 共有n條對稱軸,每條對稱軸都通過n邊形 的中心。,,,,,,4、邊數(shù)是偶數(shù)的正多邊形還是中心 對稱圖形,它的中心就是對稱中心。,,畫正多邊形的方法,1.用量角器等分圓 2.尺規(guī)作圖等分圓,,(1)正四、正八邊形的尺規(guī)作圖,(2)正六、正三 、正十二邊形的尺規(guī)作圖,由于正多邊形在生產(chǎn)、生活實際中有廣泛的應用性,所以會畫正多邊形應是學生必備能力之一。 怎樣畫一個正多邊形呢? 問題1:已知⊙O的半徑為2cm,求作圓的內接正三角形.,,,,,,120 °,①用量角器度量,使∠AOB=∠BOC=∠COA=120°. ②用量角器或30°角的三角板度量,使∠BAO=∠CAO=30°.,A,O,C,B,你能用以上方法畫出正四邊形、正五邊形、正六邊形嗎?,,·,A,B,C,D,O,,,,,,,O,,A,B,C,D,E,F,·,90°,72°,60°,你能尺規(guī)作出正四邊形、正八邊形嗎?,,·,A,B,C,D,O,,,只要作出已知⊙O的互相垂直的直徑即得圓內接正方形,再過圓心作各邊的垂線與⊙O相交,或作各中心角的角平分線與⊙O相交,即得圓接正八邊形,照此方法依次可作正十六邊形、正三十二邊形、正六十四邊形……,你能尺規(guī)作出正六邊形、正三角形、正十二邊形嗎?,,O,A,B,C,E,F,·,D,,,,,,,以半徑長在圓周上截取六段相等的弧,依次連結各等分點,則作出正六邊形. 先作出正六邊形,則可作正三角形,正十二邊形,正二十四邊形………,說說作正多邊形的方法有哪些?,歸納 (1)用量角器等分圓周作正n邊形; (2)用尺規(guī)作正方形及由此擴展作正八邊形, 用尺規(guī)作正六邊形及由此擴展作正12邊形、正三角形.,練習: (1)用量角器作五角星; (2)P116.,探究,按照一定比例,畫一個停車 讓行的交通標志的外緣,,,停,,,,,,,,,A,B,C,D,E,,O,如圖: 已知點A、B、C、D、E是⊙O 的5等分點,畫出⊙O的內接和外切正五邊形,,,小結: 1、怎樣的多邊形是正多邊形? 你能舉例說明嗎? 2、怎樣判定一個多邊形是正多邊形?,,,各邊相等,各角也相等的多邊形叫做正多邊形。,根據(jù)正多邊形與圓關系的 第一個定理,達標檢測: 1、判斷題。 ①各邊都相等的多邊形是正多邊形。 ( ) ②一個圓有且只有一個內接正多邊形。 ( ) 2、證明題。 求證:順次連結正六邊形 各邊中點所得的多 邊形是正六邊形。,,,,,,,,,,,,,,A,B,C,D,E,F,×,×,- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 九年級數(shù)學上冊 24.3 正多邊形和圓課件 新版新人教版 九年級 數(shù)學 上冊 正多邊形 課件 新版 新人
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權,請勿作他用。
鏈接地址:http://m.appdesigncorp.com/p-1793633.html