鈑金在級進模中的工步排樣設(shè)計自動化畢業(yè)課程設(shè)計外文文獻翻譯、中英文翻譯、外文翻譯
鈑金在級進模中的工步排樣設(shè)計自動化畢業(yè)課程設(shè)計外文文獻翻譯、中英文翻譯、外文翻譯,級進模,中的,工步排樣,設(shè)計,自動化,畢業(yè),課程設(shè)計,外文,文獻,翻譯,中英文
0鈑金在級進模中的工步排樣設(shè)計自動化摘 要工步排樣設(shè)計在鈑金級進模規(guī)劃進程當中是一個重要步驟。它是一種依賴經(jīng)驗執(zhí)行的工作,工步排樣質(zhì)量很大程度上取決于模具設(shè)計師的知識和技能。本文提出了一種工步排樣設(shè)計自動化過程的專業(yè)系統(tǒng)。該系統(tǒng)的開發(fā)是使用趨向人工智能(AI)生產(chǎn)規(guī)則的專業(yè)系統(tǒng)。它包括專家向用戶建議的六大模塊:識別金屬板操作,排序操作,選擇適當?shù)南驅(qū)Х桨?,工位?shù),分階段對級進模的操作和選擇適當尺寸的條狀胚料。最后,工步排樣系統(tǒng)模塊自動在 AutoCAD 繪圖編輯器上利用其他模塊的輸出數(shù)據(jù)文件。系統(tǒng)的有效性通過一個工業(yè)組件的例子演示,該系統(tǒng)靈活且成本低。關(guān)鍵詞:自動化;工步排樣設(shè)計;鈑金加工;級進模;專家系統(tǒng)1 介紹工步排樣設(shè)計在級進模設(shè)計規(guī)劃階段當中作為一個極具重要性的生產(chǎn)力,模具的精度、成本和質(zhì)量主要取決于工步排樣(Tor et al ,.2005) 。傳統(tǒng)的工步排樣設(shè)計是手工的,且需依靠豐富的經(jīng)驗完成,因此單調(diào)乏味,耗時且容易出錯(Li et al.,2002;ridha,2003) 。40 年前工步排樣的問題都是手工解決的,即通過操作硬紙板切割胚料而獲得一個好的排樣。這個試錯過程獲得合適且最大材料利用率的工步排樣,仍然被使用在全世界的的大多數(shù)規(guī)模小、甚至在一些中等規(guī)模鈑金行業(yè)中。工步排樣的質(zhì)量通常利用于設(shè)計者的經(jīng)驗和知識的傳統(tǒng)方法而達到。計算機輔助設(shè)計(CAD)系統(tǒng)的出現(xiàn)大約在三十年前,工步排樣設(shè)計的過程變得更加容易,更換模具的設(shè)計從幾天減少到幾小時。然而,訓(xùn)練有素和經(jīng)驗豐富的模具設(shè)計師仍然需要操作這些 CAD 系統(tǒng)。工步排樣設(shè)計中的大多數(shù) CAD 應(yīng)用的主要目的是通過旋轉(zhuǎn)和盡可能緊湊地布置胚料余料從而實現(xiàn)更高的材料利用率。然而,最大限度的節(jié)省材料的工步排樣并不一定是最好的,事實上沖模結(jié)構(gòu)可能會變得更加復(fù)雜,這使得節(jié)省材料的經(jīng)濟性有所抵消,除非需要生產(chǎn)大量的零部件。該系統(tǒng)由 Schaffer(1971)于 1971 年發(fā)表的關(guān)于在懸臂式模具測試中由于彎矩產(chǎn)生的壓力的計算報告中提出的。如果系統(tǒng)發(fā)現(xiàn)應(yīng)力水平高于模具鋼材料的屈服應(yīng)力,然后系統(tǒng)將會分配幾個階段進行切割操作從而使壓力保持在合 1理的限制范圍內(nèi)。系統(tǒng)的限制之一是,它不提供任何重要的復(fù)雜模具和沖壓機分段操作。Adachi et al(1983)為級進模的設(shè)計開發(fā)了一個集成化的 CAD 系統(tǒng)。系統(tǒng)輸出也包括了一代級進模工步排樣。但是用戶必須自己指定獲得工步排樣的操作順序。Nee(1984a,b, 1985)發(fā)表了一些關(guān)于沖壓能力分析的實驗方案,盤繞狀或帶狀胚料的使用和成本因素的考慮是為了解決最優(yōu)設(shè)計排樣和金屬板和沖壓件余料間的嵌套問題。他所有的工作集中在通用工步排樣設(shè)計過程和不涉及其他沖壓操作的專家規(guī)則,如沖孔、彎曲、成形等。該系統(tǒng)是由 Duffy 和 Sun (1991) 研制的以知識為基礎(chǔ)的系統(tǒng)方法來生成用于連續(xù)沖壓模的工步排樣。該系統(tǒng)在 IDL 中實現(xiàn),是一個以知識為基礎(chǔ)的系統(tǒng)語言。該系統(tǒng)有生成工步排樣性能;然而,它還沒有實現(xiàn),其功能在現(xiàn)實生活中沒有測試。由 Prasad 和 somasundaram(1992)研發(fā)的計算機輔助模具設(shè)計系統(tǒng)(CADDS)中同樣也有一個的關(guān)于級進模工步排樣模塊。在這個模塊中,根據(jù)輸入的參數(shù)選擇模具型號。如果選中的模具是連續(xù)的,帶料開發(fā)是隨后根據(jù)規(guī)定納入工步排樣模塊的。但是系統(tǒng)的主要限制是它支持主要的沖裁和沖孔操作。Singh 和Sekhon(2001)開發(fā)了一種低成本的二維金屬沖壓排樣建模器。該軟件是基于AutoCAD 和 AutoLISP 的基礎(chǔ)上開發(fā)的。該系統(tǒng)可以實現(xiàn)圓形、多邊形和有彎曲段組件的建模。供選擇的工步排樣也按最優(yōu)生產(chǎn)及檢測。該系統(tǒng)的主要限制是它只處理單一操作沖壓模具。Kim et al .(2002) 用 AutoLISP 語言開發(fā)了一個系統(tǒng)。系統(tǒng)通過對彎曲幾個因素的考慮和采用模糊理論,電器產(chǎn)品確定了復(fù)雜沖孔和彎曲操作的工藝順序。通過構(gòu)建模糊矩陣,并結(jié)合模糊推理的幾個規(guī)則,計算出模糊關(guān)系值和確定最佳彎曲度。該系統(tǒng)的工步排樣模塊能夠進行 3D 電子產(chǎn)品的彎曲和沖孔操作。這個系統(tǒng)的主要限制是它在級進模上只能進行彎曲和沖孔操作。Venkata Rao (2004)提出了一個工步排樣金屬模具沖壓工作有關(guān)的選擇過程。這個過程基于層次分析法(AHP) 。但是,開發(fā)過程只適用于簡單的落料和沖孔模。Chu et al .(2004)提出了一個在連續(xù)沖壓模的設(shè)計中能夠生成一個自動沖壓順序的數(shù)學(xué)技術(shù)。圖 1 用于表示一個沖壓件并定義其沖壓特征之間的關(guān)系。該圖通過使用聚類算法劃分出相互獨立的頂點。最后,簇集的進行排序,得到工位數(shù)最終序列。該系統(tǒng)的一個標準軟件的完善和發(fā)展仍在進行中,而且必須針對實際工業(yè)中具有不同形狀的鈑金件進行測試。上述文章綜述顯示,只有少數(shù)的研究和開發(fā)工作在鈑金在級進模沖工步排樣設(shè)計自動化領(lǐng)域得到實現(xiàn)。大部分工作都集中在金屬板落料沖孔操作的工藝規(guī)劃上。一些商業(yè)計算機輔助系統(tǒng)可以協(xié)助模具設(shè)計師,但這些僅是有限的簡單計算,帶嵌套、檢索目錄數(shù)據(jù)和編制標準模組件的數(shù)據(jù)庫,并沒有直接解決工步排樣設(shè)計的問題。依賴經(jīng)驗再加上模具設(shè)計師在沖壓行業(yè)的流動給世界各地的鈑金行業(yè)造成很多的不便。因此,獲得一個擁有模具設(shè)計師的經(jīng)驗及知識的專業(yè)系統(tǒng)是必不可少的,這樣的系統(tǒng)可以保留并適當運用于未來的應(yīng)用和發(fā)展。盡管一些專家系統(tǒng)已經(jīng)開發(fā)了模具設(shè)計區(qū)域,但是大部分的研究工作都集中在嵌套和金屬板料成形和變形的工藝設(shè)計上。沒有特定 2的為解決級進模工步排樣的設(shè)計問題而開發(fā)的系統(tǒng)。為提高生產(chǎn)力和建立計算機集成制造環(huán)境,工步排樣設(shè)計自動建模至關(guān)重要的。本文所闡釋的開發(fā)工作的目的主要專注于使用基本規(guī)范的人工智能專家系統(tǒng)的工步排樣自動化設(shè)計。系統(tǒng)在個人計算機自動化桌面的 AutoCAD 2004 軟件中以及和設(shè)計在 AutoCAD 的加載區(qū)域被應(yīng)用。表 1——樣品生產(chǎn)規(guī)則納入該系統(tǒng)樣品序列號 如果那么1 0.001<孔、槽或內(nèi)部輪廓切線的最小精度及 特性要求≤0.2 沖孔2 0.001<外部邊界、輪廓切口的最小精度≤0.2 開槽3 0.001<完整切割界面最小精度≤0.2 切割、分斷4 要求操作: 開槽、下料 /切斷, 穿刺 操作步驟:1、沖孔;2、開 槽;3、下料/切割5工件上孔數(shù)≥ 2;圓形孔洞直徑≥1.0mm,孔間距 ≥ 2 倍薄板厚度,孔到工件邊緣的距離≥2 倍的薄板厚度,孔的指定公差≥±0.05mm,孔位于工件兩側(cè)選擇兩個最大的孔作為測導(dǎo)向6 存在可利用于組件上的合適的孔 第一工位:沖孔、檢測7 滑塊內(nèi)部到邊緣的最小距離<2 倍薄板厚度(但不低于 3.0mm)或由設(shè)計決定 不作任何操作8 工件操作:開槽、沖孔(任意孔數(shù)) 、剪切;孔間距及孔到部件邊緣的距離>2 倍薄板厚度5 個工位數(shù)。首先,工位一,沖孔;第二工位,開槽、檢測;第三工位,沖口加工、檢測;第四,切斷。9薄板厚度≤1.4mm;25<毛胚輪廓寬度≤75mm ;銳邊(沿薄板寬度)存在于垂直薄板移動方向選擇板寬等于毛培輪廓寬度+3.2mm10 薄板厚度≤0.8mm ,毛培長度<25mm,銳邊(沿薄板長度)存在于平行薄板移動的方向 選擇進給量等于毛培長度 +2.0mm 3圖 1 提出了執(zhí)行系統(tǒng)2 工步排樣設(shè)計的建議級進模工步排樣設(shè)計是用來安排操作布局并隨后的決定所需的工位數(shù)。對于工步開始使用 AutoCAD 命令進行毛胚的建模零件的幾何特征特性結(jié)束操作識別(模塊 OPRPLAN)操作順序(模塊 OPRSEQ)分階段操作級進模(模塊 OPRSTAGE)選擇板寬和進料距離(模塊 SWLSEL)選擇導(dǎo)向方案(模塊 PLTSEL)工步排樣建模(模塊 STRPLYT)數(shù)據(jù)文件SWLSEL DAT零件數(shù)據(jù)文件COMP.DAT數(shù)據(jù)文件OPRPLAN.DAT數(shù)據(jù)文件OPRSEQ.DAT數(shù)據(jù)文件OPRSTAGE.DAT 4排樣設(shè)計,模具設(shè)計師決定零件加工所需的鈑金操作部分、操作排序、試驗方法的選擇、所需的工位數(shù)和級進模每個工位的沖壓操作。工步排樣是由零件的形狀及其技術(shù)要求決定的。它通常是受零件的幾何特征,公差尺寸,尖銳的條料邊緣方向和其他技術(shù)要求支配。工步排樣設(shè)計中的如何確定一個合適的沖壓操作序列從而使零件能夠被正確地有效地沖壓是個重要而困難的一個步驟。條料的操作順序和每一個操作細節(jié)的必須精心研制,以確保設(shè)計生產(chǎn)出良好的無生產(chǎn)或維修問題的鈑金零件。通常情況下工步排樣設(shè)計的最佳解決方案并不是唯一的,但某些常見的規(guī)則可以用于指導(dǎo)工步排樣的設(shè)計。一些常用于工步排樣設(shè)計的重要規(guī)則通如下:(1)初始操作如切邊或裁剪,不直接影響最終產(chǎn)品的形狀的工序應(yīng)該放在第一階段。(2)如果有合適的孔可用于鈑金零件上,這些孔應(yīng)該用于向?qū)?,否則應(yīng)根據(jù)級數(shù)引入外部先導(dǎo)孔。這些導(dǎo)向孔的沖孔加工應(yīng)在第一階段或剪裁階段完成后進行。導(dǎo)向孔的位置應(yīng)該總是以最大可能的間隙遠離帶料的兩側(cè)。這是為了得到最好的定位和帶料的固定,使導(dǎo)向孔在各自的位置導(dǎo)向。(3)在一個工位上沖孔,兩個孔之間的距離必須大于某個確定值以確保模具強度。如果他們有密切的定位和功能不相關(guān),沖孔可以分布在幾個不同的階段(4)位置精度要求高的孔的應(yīng)該要在一個工位上沖孔。(5)一個模具上不應(yīng)設(shè)計狹窄的槽和凸出部分,以防止模具發(fā)生斷裂可能。(6)如果坯件的外部輪廓是復(fù)雜的,則可以把坯料凸出的所有頂點垂直向上到帶材的邊緣,使輪廓分成簡單的部分。(7)閑置工位可以用來避免擁擠的沖頭和模具塊一起。另外一個優(yōu)勢是,未來可以用低成本整合工程更改。(8)彎曲最好應(yīng)該在最后一個工位或分階段之前完成,并且余下的帶料安排也應(yīng)滿足這樣的要求。(9)最后,切斷或切邊工序(s)和作為半導(dǎo)向的內(nèi)孔(如果有的話)應(yīng)該分階段進行。(10)為了提供最大強度的橋梁,應(yīng)該使用足夠?qū)挾鹊臉颉#?1)最后,以這樣的方法設(shè)計帶料,使組件和擦傷能夠不受干擾地被驅(qū)逐。導(dǎo)向定位是級進模在工步排樣設(shè)計中是一個重要因素。條料必須在每一工位準確定位,這樣可以在適當?shù)奈恢脠?zhí)行操作。選擇導(dǎo)向方案的任務(wù)在工步排樣設(shè)計流程中應(yīng)被視為相互依存的。一個工步排樣設(shè)計系統(tǒng)應(yīng)該支持直接導(dǎo)向,半直接導(dǎo)向和間接導(dǎo)向方案。如果一個孔是圓形,指定尺寸公差不高,作為定位孔足夠大,不在工件的折疊部分,不太靠近工件的邊緣,且不太靠近工件上的另一個孔,那么這個孔被認為適合做先導(dǎo)孔。從合適的導(dǎo)孔中,最好的引導(dǎo)孔應(yīng)基于以下的條件優(yōu)先選擇:(1)如果只有一個孔是可用的,它必須首先考慮。(2)如果有很多個孔,那么應(yīng)該檢查這些孔的位置。(a)如果孔都位于條料進給方向的同一方向,那么選擇最靠近工件幾何中心的一 5個孔。(b)如果孔都位于條料進給方向的垂直方向,那么選擇兩個最大的孔(如果直徑相等的) ,且這兩個孔的的距離大于兩倍的薄板厚度。(3)選擇兩個最大的孔(其直徑在彼此的一個預(yù)先設(shè)定的百分比) ,且滿足前面的條件。保持上述基本原則和建議,就能開發(fā)出一個金屬板在級進模中的工步排樣設(shè)計自動化的專家系統(tǒng),所提出的系統(tǒng)的簡要描述如下。表 2–典型的提示,用戶的反應(yīng)和專家的建議是在專家系統(tǒng)執(zhí)行例如組件(圖 2)的過程中產(chǎn)生的提示 示例數(shù)據(jù)輸入 對用戶的建議請輸入薄板材料 黃銅 毛胚模型使用 AutoCAD 命令請輸入薄板厚度(mm ) 0.6 請輸入 OPRPLAN 命令OPRPLAN —— 歡迎來到 OPRPLAN 模塊,此開發(fā)用于識別操作輸入進給類型 自動 ——帶料是否翹曲? 否 請以問卷的形式輸入零件的幾 何特征(是/ 否)外部邊界或輪廓是否存在小切口或缺口? 是 ——是否存在孔或槽或內(nèi)部輪廓切割? 是 ——薄板邊緣是否粗糙? 否 ——沿著直線軸是否存在彎曲? 否 ——是否存在彎曲或成型? 否 ——是否要求在毛胚的任一邊完整切割? 是以下操作是必需的——開槽,沖孔、切斷。請輸入 OPRSEQ命令OPRSEQ ——歡迎來 OPRSEQ 模塊,此模塊的開發(fā)是用于識別操作順序的正確性。操作順序如下:第一,沖孔;第二,開槽;第三,切斷。請輸入 PLTSEL 命令 6PLTSEL —— 歡迎來到 PLTSEL 模塊,此模塊是用于選擇導(dǎo)向方案工件上是否存在任何折疊部分? 否 ——輸入孔的指定公差 0.05 ——孔是否位于工件的兩側(cè) 是選擇工件兩側(cè)上最大的孔作為導(dǎo)向孔,請輸入 OPRSTAGE 命令OPRSTAGE ——歡迎來到 OPRSTAGE 模塊,此模塊用于工位數(shù)的確定和級進模的分段操作。請輸入OPRSTAGE1 命令OPRSTAGE1 —— ——孔與孔之間的中心距是否在±0.05mm 范圍? 是 在同一工位上沖這些孔工件上外輪廓是否存在復(fù)雜的或薄弱部分 否 ——內(nèi)部特征邊緣之間的和模塊邊緣最小距離是否<2.0 倍薄板厚度(但不能小于3.00mm)?”R” 工件在為來工程中是否有變更的可能?否 請輸入 OPRSTAGE2 命令OPRSTAGE2輸入工件上槽的數(shù)量 2 ——輸入工件上的孔數(shù) 2所需的工位數(shù)=5。分段操作的首選:第一工位:沖孔;第二工位:沖孔、開槽和導(dǎo)向;第三工位:開槽和導(dǎo)向;第四工位:開槽和導(dǎo)向;第五工位:切斷。請輸入 SWLSEL 命令。SWLSEL —— 歡迎來到 SWLSEL 模塊,此模塊用于確定帶鋼寬度和進給的 7距離輸入毛胚輪廓寬度(mm) 62.0 ——輸入薄片鋒利的邊緣方向(沿板寬)垂直于帶材的移動方向 選擇帶料寬度=65.2mm輸入毛胚輪廓長度(mm) 12.7 ——輸入移動薄板的鋒利的邊緣方向(沿板的長度)平行于帶材的移動方向選擇進給距離(或間距)=14.7mm,命令請輸入STRPLYTSTRPLYT ——歡迎來到 STRPLYT 模塊,此模塊是為工步排樣自動建模而開發(fā)的選擇一個起點 (220,100) 系統(tǒng)工步排樣建模在 AutoCAD的繪圖編輯器上顯示3 所提出的系統(tǒng)的開發(fā)和執(zhí)行所提出的系統(tǒng)每一模塊的知識的獲得有各種來源(Kumar et al .,2006),包括經(jīng)驗豐富的模具設(shè)計師,車間工程師、模具設(shè)計手冊、期刊研究、手冊和工業(yè)手冊。從各種來源收集來的設(shè)計資料通過 IF-THEN 變化,構(gòu)造成適合生產(chǎn)規(guī)則的有用知識。為了簡便,所提出的系統(tǒng)把成套的生產(chǎn)規(guī)則知識庫為六個模塊,即 OPRPLAN, OPRSEQ, PLTSEL, OPRSTAGE, SWLSEL and STRPLYT。每個模塊生產(chǎn)規(guī)則的制定都會經(jīng)過其他團隊的模具設(shè)計專家使用 IF-THEN 規(guī)則中的 IF 條件假設(shè)進行反復(fù)驗證。一個樣本經(jīng)過制定和驗證;然后納入該系統(tǒng)各模塊的功能是表 1 中給出。所提出的系統(tǒng)的生產(chǎn)規(guī)則的序列是非結(jié)構(gòu)化的,這種安排甚至允許專業(yè)知識相對較少的工程師插入新的規(guī)則。這些用 AutoLISP 語言編碼,同樣它可以在 AutoCAD 界面上進行工步排樣建模。通過推理機制的正向推理把生產(chǎn)規(guī)則和系統(tǒng)的知識庫聯(lián)系在一起。系統(tǒng)的知識庫中包括 300多個種類的 IF-THEN 規(guī)則。然而,系統(tǒng)是足夠靈活的,因為知識庫可以更新和修改,如果有必要,在技術(shù)上提升和使用車間里的可用的新設(shè)備。系統(tǒng)的執(zhí)行如流程圖圖 1 所示。系統(tǒng)要求用戶在模型的空白處使用 AutoCAD 指令。隨后用戶在 AutoCAD 提示區(qū)輸入零件數(shù)據(jù)信息,如薄板厚度、薄板材料等。系統(tǒng)會自動將這些零件數(shù)據(jù)存儲在一個零件數(shù)據(jù)文件上并標記為 COMP.DAT。系統(tǒng)的第一個模塊 OPRPLAN 確定零件加工所需的金屬板操作類型。該模塊需要用戶輸入相關(guān)數(shù)據(jù), 8即零件的尺寸公差和幾何特征。這個模塊的輸出是零件制造所需的金屬板操作推薦的類型。下一個模塊 OPRSEQ 決定鈑金操作推薦的順序。它直接從 OPRPLAN 模塊在執(zhí)行過程中生成出數(shù)據(jù)文件 OPRPLAN.DAT 獲取所需要的輸入數(shù)據(jù)。 PLTSEL 模塊的開發(fā)是為了選擇適當?shù)膶?dǎo)向方案以便級進模在每一個工位上精確定位。下一個模塊OPRSTAGE 的開發(fā)是用于獲得專家建議的工位數(shù)量和對級進模分階段操作的首選操作。這個模塊數(shù)據(jù)的輸入是從 OPRSEQ 模塊在執(zhí)行過程中生成的輸出數(shù)據(jù)文件OPRSEQ.DAT 中獲取。并請用戶須輸入特定的工作數(shù)據(jù)如作為零件的特征。模塊SWLSEL 決定金屬板料合適的尺寸大小。建模模塊 STRPLYT 在 AutoCAD 繪圖編輯上刪除任何以前的存在圖以及選擇合適的屏幕進行工步排樣建模。接下來,它要求用戶在 AutoCAD 屏幕上選擇起始點。當用戶使用光標選擇起始點或在 AutoCAD 提示區(qū)中鍵入,模塊 STRPLYT 自動在 AutoCAD 繪圖編輯器中進行工步排樣建模。4 驗證所提出的系統(tǒng)所提出的系統(tǒng)已經(jīng)測試了不同類型的鈑金件工步排樣設(shè)計的問題。典型的提示,例如用戶在組件的系統(tǒng)執(zhí)行過程中,用戶的反應(yīng)和獲得的建議(圖 2)是通過表 2 給出的。系統(tǒng)工步排樣的生成見圖 3。輸出的數(shù)據(jù)是從各種系統(tǒng)模塊得到的。這些形式如模塊的識別操作,排序操作,導(dǎo)向方案的選擇,所需工位數(shù),工序的分階段操作和帶料的尺寸與那些這經(jīng)驗豐富的模具設(shè)計人員和工藝規(guī)劃者在工作實踐中的得到的數(shù)據(jù)十分相似且合理,在沖壓行業(yè)即稱為 Indo Asian Fuse Gear Limited,由 Murthal、哈里亞納邦、印度等組成。工步排樣由開發(fā)系統(tǒng)生成圖紙,同時也和模具設(shè)計師豐富經(jīng)驗有密切聯(lián)系。5 結(jié)論研究工作已被應(yīng)用于鈑金級進模工步排樣設(shè)計自動化。生產(chǎn)的基于規(guī)則的專家系統(tǒng)方法已被用于所提出的智能系統(tǒng)的開發(fā)。生產(chǎn)規(guī)則使用 AutoLISP 語言進行編碼來構(gòu)建基本知識系統(tǒng),因為它可以在 AutoCAD 界面進行工步排樣建模。系統(tǒng)能夠傳授專家建議的零件制造要求所需的鈑金操作類型, 操作排序,選擇適當?shù)膶?dǎo)向方案,需要的工位數(shù)和級進模第一分段的操作;以及選擇合適大小的帶料。最后,根據(jù)系統(tǒng)生成的輸出模塊,系統(tǒng)能夠在 AutoCAD 繪圖編輯器上自動建立工步排樣模型。該系統(tǒng)的運行示例使用工業(yè)鈑金件已經(jīng)證明了系統(tǒng)的實用性。該系統(tǒng)是靈活的,具有實現(xiàn)成本也可以在 PC 機具有 AutoCAD 軟件操作。小型鈑金行業(yè)使用此系統(tǒng)的費用很容易負擔得起的。 9 10參考文獻 [1] Adachi,M., Inoue, K., Funayama, T.,1983. Integrated CAD system for progressive dies. Fujitsu Sci. Tech. J.19(2),133–148.[2] Chu, C.Y., Tor, S.B., Britton, G.A.,2004. A graph theoretic approach for stamping operations sequencing. Proc. Inst. Mech. Eng.Part B: J. Eng. Manuf.218,467–471.[3] Duffy, M.R., Sun, Q.,1991. Knowledge-based design of progressive stamping dies. J. Mater. Process. Technol.28,221–227.[4] Kim, C., Park, Y.S., Kim, J.H., Choi, J.C.,2002. A study on the development of computer-aided process planning system for electric product with bending and piercing operations. J.Mater. Process. Technol.130–131,626–631.[5] Kumar, S., Singh, R., Sekhon, G.S.,2006. CCKBS: a component check knowledge-based system for assessing manufacturability of sheet metal parts. J. Mater. Process.Technol.172, 64–69.[6] Li, J.Y., Nee, A.Y.C., Cheok, B.T.,2002. Integrated feature-based modeling and process planning of bending operations in progressive die design. Int. J. Adv. Manuf. Technol.20,883–895.[7] Nee, A.Y.C., 1984a. A heuristic algorithm for optimum layout of metal stamping blanks. Ann. CIRP 33,317–320.Nee, A.Y.C.,1984b. Computer aided layout of metal stamping blanks. Proc. Inst. Mech. Eng., Part B: J. Eng. Manuf.198(10),187–194.[8] Nee, A.Y.C., 1984a. A heuristic algorithm for optimum layout of metal stamping blanks. Ann. CIRP 33,317–320.[9] Nee, A.Y.C.,1984b. Computer aided layout of metal stamping blanks. Proc. Inst. Mech. Eng., Part B: J. Eng. Manuf.198(10),187–194.[10] Nee, A.Y.C.,1985. A micro-computer based blank layout solution for metal stamping. Sheet Met. Ind.62(3),156–160.Prasad, Y.K.D.V., Somasundaram, S.,1992. CADDS: an automated die design system for sheet metal blanking. Comput. Contr.Eng. J.3,185–191.[11] Ridha, H.,2003. BLANKSOFT: a code for sheet metal blanking processes optimization. J. Mater. Process. Technol.141,234–242.[12] Schaffer, G., 1971. Computer designs progressive dies. Am.Machinist 22,73–75.[13] Singh, R., Sekhon, G.S.,2001. A low cost modeler for optimal stamping layouts for sheet metal operations. In: Proceedings of the Ninth International Conference on Sheet Metal(She-Met 2001), Katholic Universit, Leuve, Belgiu, April 2–4, p,363–370.[14] Tor, S.B., Britton, G.A., Zhang, W.Y.,2005. Development of an object-oriented blackboard model 11for stamping process planning in progressive die design. J. Intell. Manuf.16,499–513.[15] Venkata Rao, R.,2004. Evaluation of metal stamping layouts using an analytic hierarchy process method. J. Mater. Process.Technol.152,71–76. 12附 錄圖 2 示例組件(黃銅,板材厚度= 0.6 毫米)圖 3 系統(tǒng)所提出的工步排樣,例如組件 0鈑金在級進模中的工步排樣設(shè)計自動化摘 要工步排樣設(shè)計在鈑金級進模規(guī)劃進程當中是一個重要步驟。它是一種依賴經(jīng)驗執(zhí)行的工作,工步排樣質(zhì)量很大程度上取決于模具設(shè)計師的知識和技能。本文提出了一種工步排樣設(shè)計自動化過程的專業(yè)系統(tǒng)。該系統(tǒng)的開發(fā)是使用趨向人工智能(AI)生產(chǎn)規(guī)則的專業(yè)系統(tǒng)。它包括專家向用戶建議的六大模塊:識別金屬板操作,排序操作,選擇適當?shù)南驅(qū)Х桨?,工位?shù),分階段對級進模的操作和選擇適當尺寸的條狀胚料。最后,工步排樣系統(tǒng)模塊自動在 AutoCAD 繪圖編輯器上利用其他模塊的輸出數(shù)據(jù)文件。系統(tǒng)的有效性通過一個工業(yè)組件的例子演示,該系統(tǒng)靈活且成本低。關(guān)鍵詞:自動化;工步排樣設(shè)計;鈑金加工;級進模;專家系統(tǒng)1 介紹工步排樣設(shè)計在級進模設(shè)計規(guī)劃階段當中作為一個極具重要性的生產(chǎn)力,模具的精度、成本和質(zhì)量主要取決于工步排樣(Tor et al ,.2005) 。傳統(tǒng)的工步排樣設(shè)計是手工的,且需依靠豐富的經(jīng)驗完成,因此單調(diào)乏味,耗時且容易出錯(Li et al.,2002;ridha,2003) 。40 年前工步排樣的問題都是手工解決的,即通過操作硬紙板切割胚料而獲得一個好的排樣。這個試錯過程獲得合適且最大材料利用率的工步排樣,仍然被使用在全世界的的大多數(shù)規(guī)模小、甚至在一些中等規(guī)模鈑金行業(yè)中。工步排樣的質(zhì)量通常利用于設(shè)計者的經(jīng)驗和知識的傳統(tǒng)方法而達到。計算機輔助設(shè)計(CAD)系統(tǒng)的出現(xiàn)大約在三十年前,工步排樣設(shè)計的過程變得更加容易,更換模具的設(shè)計從幾天減少到幾小時。然而,訓(xùn)練有素和經(jīng)驗豐富的模具設(shè)計師仍然需要操作這些 CAD 系統(tǒng)。工步排樣設(shè)計中的大多數(shù) CAD 應(yīng)用的主要目的是通過旋轉(zhuǎn)和盡可能緊湊地布置胚料余料從而實現(xiàn)更高的材料利用率。然而,最大限度的節(jié)省材料的工步排樣并不一定是最好的,事實上沖模結(jié)構(gòu)可能會變得更加復(fù)雜,這使得節(jié)省材料的經(jīng)濟性有所抵消,除非需要生產(chǎn)大量的零部件。該系統(tǒng)由 Schaffer(1971)于 1971 年發(fā)表的關(guān)于在懸臂式模具測試中由于彎矩產(chǎn)生的壓力的計算報告中提出的。如果系統(tǒng)發(fā)現(xiàn)應(yīng)力水平高于模具鋼材料的屈服應(yīng)力,然后系統(tǒng)將會分配幾個階段進行切割操作從而使壓力保持在合 1理的限制范圍內(nèi)。系統(tǒng)的限制之一是,它不提供任何重要的復(fù)雜模具和沖壓機分段操作。Adachi et al(1983)為級進模的設(shè)計開發(fā)了一個集成化的 CAD 系統(tǒng)。系統(tǒng)輸出也包括了一代級進模工步排樣。但是用戶必須自己指定獲得工步排樣的操作順序。Nee(1984a,b, 1985)發(fā)表了一些關(guān)于沖壓能力分析的實驗方案,盤繞狀或帶狀胚料的使用和成本因素的考慮是為了解決最優(yōu)設(shè)計排樣和金屬板和沖壓件余料間的嵌套問題。他所有的工作集中在通用工步排樣設(shè)計過程和不涉及其他沖壓操作的專家規(guī)則,如沖孔、彎曲、成形等。該系統(tǒng)是由 Duffy 和 Sun (1991) 研制的以知識為基礎(chǔ)的系統(tǒng)方法來生成用于連續(xù)沖壓模的工步排樣。該系統(tǒng)在 IDL 中實現(xiàn),是一個以知識為基礎(chǔ)的系統(tǒng)語言。該系統(tǒng)有生成工步排樣性能;然而,它還沒有實現(xiàn),其功能在現(xiàn)實生活中沒有測試。由 Prasad 和 somasundaram(1992)研發(fā)的計算機輔助模具設(shè)計系統(tǒng)(CADDS)中同樣也有一個的關(guān)于級進模工步排樣模塊。在這個模塊中,根據(jù)輸入的參數(shù)選擇模具型號。如果選中的模具是連續(xù)的,帶料開發(fā)是隨后根據(jù)規(guī)定納入工步排樣模塊的。但是系統(tǒng)的主要限制是它支持主要的沖裁和沖孔操作。Singh 和Sekhon(2001)開發(fā)了一種低成本的二維金屬沖壓排樣建模器。該軟件是基于AutoCAD 和 AutoLISP 的基礎(chǔ)上開發(fā)的。該系統(tǒng)可以實現(xiàn)圓形、多邊形和有彎曲段組件的建模。供選擇的工步排樣也按最優(yōu)生產(chǎn)及檢測。該系統(tǒng)的主要限制是它只處理單一操作沖壓模具。Kim et al .(2002) 用 AutoLISP 語言開發(fā)了一個系統(tǒng)。系統(tǒng)通過對彎曲幾個因素的考慮和采用模糊理論,電器產(chǎn)品確定了復(fù)雜沖孔和彎曲操作的工藝順序。通過構(gòu)建模糊矩陣,并結(jié)合模糊推理的幾個規(guī)則,計算出模糊關(guān)系值和確定最佳彎曲度。該系統(tǒng)的工步排樣模塊能夠進行 3D 電子產(chǎn)品的彎曲和沖孔操作。這個系統(tǒng)的主要限制是它在級進模上只能進行彎曲和沖孔操作。Venkata Rao (2004)提出了一個工步排樣金屬模具沖壓工作有關(guān)的選擇過程。這個過程基于層次分析法(AHP) 。但是,開發(fā)過程只適用于簡單的落料和沖孔模。Chu et al .(2004)提出了一個在連續(xù)沖壓模的設(shè)計中能夠生成一個自動沖壓順序的數(shù)學(xué)技術(shù)。圖 1 用于表示一個沖壓件并定義其沖壓特征之間的關(guān)系。該圖通過使用聚類算法劃分出相互獨立的頂點。最后,簇集的進行排序,得到工位數(shù)最終序列。該系統(tǒng)的一個標準軟件的完善和發(fā)展仍在進行中,而且必須針對實際工業(yè)中具有不同形狀的鈑金件進行測試。上述文章綜述顯示,只有少數(shù)的研究和開發(fā)工作在鈑金在級進模沖工步排樣設(shè)計自動化領(lǐng)域得到實現(xiàn)。大部分工作都集中在金屬板落料沖孔操作的工藝規(guī)劃上。一些商業(yè)計算機輔助系統(tǒng)可以協(xié)助模具設(shè)計師,但這些僅是有限的簡單計算,帶嵌套、檢索目錄數(shù)據(jù)和編制標準模組件的數(shù)據(jù)庫,并沒有直接解決工步排樣設(shè)計的問題。依賴經(jīng)驗再加上模具設(shè)計師在沖壓行業(yè)的流動給世界各地的鈑金行業(yè)造成很多的不便。因此,獲得一個擁有模具設(shè)計師的經(jīng)驗及知識的專業(yè)系統(tǒng)是必不可少的,這樣的系統(tǒng)可以保留并適當運用于未來的應(yīng)用和發(fā)展。盡管一些專家系統(tǒng)已經(jīng)開發(fā)了模具設(shè)計區(qū)域,但是大部分的研究工作都集中在嵌套和金屬板料成形和變形的工藝設(shè)計上。沒有特定 2的為解決級進模工步排樣的設(shè)計問題而開發(fā)的系統(tǒng)。為提高生產(chǎn)力和建立計算機集成制造環(huán)境,工步排樣設(shè)計自動建模至關(guān)重要的。本文所闡釋的開發(fā)工作的目的主要專注于使用基本規(guī)范的人工智能專家系統(tǒng)的工步排樣自動化設(shè)計。系統(tǒng)在個人計算機自動化桌面的 AutoCAD 2004 軟件中以及和設(shè)計在 AutoCAD 的加載區(qū)域被應(yīng)用。表 1——樣品生產(chǎn)規(guī)則納入該系統(tǒng)樣品序列號 如果那么1 0.001<孔、槽或內(nèi)部輪廓切線的最小精度及 特性要求≤0.2 沖孔2 0.001<外部邊界、輪廓切口的最小精度≤0.2 開槽3 0.001<完整切割界面最小精度≤0.2 切割、分斷4 要求操作: 開槽、下料 /切斷, 穿刺 操作步驟:1、沖孔;2、開 槽;3、下料/切割5工件上孔數(shù)≥ 2;圓形孔洞直徑≥1.0mm,孔間距 ≥ 2 倍薄板厚度,孔到工件邊緣的距離≥2 倍的薄板厚度,孔的指定公差≥±0.05mm,孔位于工件兩側(cè)選擇兩個最大的孔作為測導(dǎo)向6 存在可利用于組件上的合適的孔 第一工位:沖孔、檢測7 滑塊內(nèi)部到邊緣的最小距離<2 倍薄板厚度(但不低于 3.0mm)或由設(shè)計決定 不作任何操作8 工件操作:開槽、沖孔(任意孔數(shù)) 、剪切;孔間距及孔到部件邊緣的距離>2 倍薄板厚度5 個工位數(shù)。首先,工位一,沖孔;第二工位,開槽、檢測;第三工位,沖口加工、檢測;第四,切斷。9薄板厚度≤1.4mm;25<毛胚輪廓寬度≤75mm ;銳邊(沿薄板寬度)存在于垂直薄板移動方向選擇板寬等于毛培輪廓寬度+3.2mm10 薄板厚度≤0.8mm ,毛培長度<25mm,銳邊(沿薄板長度)存在于平行薄板移動的方向 選擇進給量等于毛培長度 +2.0mm 3圖 1 提出了執(zhí)行系統(tǒng)2 工步排樣設(shè)計的建議級進模工步排樣設(shè)計是用來安排操作布局并隨后的決定所需的工位數(shù)。對于工步開始使用 AutoCAD 命令進行毛胚的建模零件的幾何特征特性結(jié)束操作識別(模塊 OPRPLAN)操作順序(模塊 OPRSEQ)分階段操作級進模(模塊 OPRSTAGE)選擇板寬和進料距離(模塊 SWLSEL)選擇導(dǎo)向方案(模塊 PLTSEL)工步排樣建模(模塊 STRPLYT)數(shù)據(jù)文件SWLSEL DAT零件數(shù)據(jù)文件COMP.DAT數(shù)據(jù)文件OPRPLAN.DAT數(shù)據(jù)文件OPRSEQ.DAT數(shù)據(jù)文件OPRSTAGE.DAT 4排樣設(shè)計,模具設(shè)計師決定零件加工所需的鈑金操作部分、操作排序、試驗方法的選擇、所需的工位數(shù)和級進模每個工位的沖壓操作。工步排樣是由零件的形狀及其技術(shù)要求決定的。它通常是受零件的幾何特征,公差尺寸,尖銳的條料邊緣方向和其他技術(shù)要求支配。工步排樣設(shè)計中的如何確定一個合適的沖壓操作序列從而使零件能夠被正確地有效地沖壓是個重要而困難的一個步驟。條料的操作順序和每一個操作細節(jié)的必須精心研制,以確保設(shè)計生產(chǎn)出良好的無生產(chǎn)或維修問題的鈑金零件。通常情況下工步排樣設(shè)計的最佳解決方案并不是唯一的,但某些常見的規(guī)則可以用于指導(dǎo)工步排樣的設(shè)計。一些常用于工步排樣設(shè)計的重要規(guī)則通如下:(1)初始操作如切邊或裁剪,不直接影響最終產(chǎn)品的形狀的工序應(yīng)該放在第一階段。(2)如果有合適的孔可用于鈑金零件上,這些孔應(yīng)該用于向?qū)?,否則應(yīng)根據(jù)級數(shù)引入外部先導(dǎo)孔。這些導(dǎo)向孔的沖孔加工應(yīng)在第一階段或剪裁階段完成后進行。導(dǎo)向孔的位置應(yīng)該總是以最大可能的間隙遠離帶料的兩側(cè)。這是為了得到最好的定位和帶料的固定,使導(dǎo)向孔在各自的位置導(dǎo)向。(3)在一個工位上沖孔,兩個孔之間的距離必須大于某個確定值以確保模具強度。如果他們有密切的定位和功能不相關(guān),沖孔可以分布在幾個不同的階段(4)位置精度要求高的孔的應(yīng)該要在一個工位上沖孔。(5)一個模具上不應(yīng)設(shè)計狹窄的槽和凸出部分,以防止模具發(fā)生斷裂可能。(6)如果坯件的外部輪廓是復(fù)雜的,則可以把坯料凸出的所有頂點垂直向上到帶材的邊緣,使輪廓分成簡單的部分。(7)閑置工位可以用來避免擁擠的沖頭和模具塊一起。另外一個優(yōu)勢是,未來可以用低成本整合工程更改。(8)彎曲最好應(yīng)該在最后一個工位或分階段之前完成,并且余下的帶料安排也應(yīng)滿足這樣的要求。(9)最后,切斷或切邊工序(s)和作為半導(dǎo)向的內(nèi)孔(如果有的話)應(yīng)該分階段進行。(10)為了提供最大強度的橋梁,應(yīng)該使用足夠?qū)挾鹊臉颉#?1)最后,以這樣的方法設(shè)計帶料,使組件和擦傷能夠不受干擾地被驅(qū)逐。導(dǎo)向定位是級進模在工步排樣設(shè)計中是一個重要因素。條料必須在每一工位準確定位,這樣可以在適當?shù)奈恢脠?zhí)行操作。選擇導(dǎo)向方案的任務(wù)在工步排樣設(shè)計流程中應(yīng)被視為相互依存的。一個工步排樣設(shè)計系統(tǒng)應(yīng)該支持直接導(dǎo)向,半直接導(dǎo)向和間接導(dǎo)向方案。如果一個孔是圓形,指定尺寸公差不高,作為定位孔足夠大,不在工件的折疊部分,不太靠近工件的邊緣,且不太靠近工件上的另一個孔,那么這個孔被認為適合做先導(dǎo)孔。從合適的導(dǎo)孔中,最好的引導(dǎo)孔應(yīng)基于以下的條件優(yōu)先選擇:(1)如果只有一個孔是可用的,它必須首先考慮。(2)如果有很多個孔,那么應(yīng)該檢查這些孔的位置。(a)如果孔都位于條料進給方向的同一方向,那么選擇最靠近工件幾何中心的一 5個孔。(b)如果孔都位于條料進給方向的垂直方向,那么選擇兩個最大的孔(如果直徑相等的) ,且這兩個孔的的距離大于兩倍的薄板厚度。(3)選擇兩個最大的孔(其直徑在彼此的一個預(yù)先設(shè)定的百分比) ,且滿足前面的條件。保持上述基本原則和建議,就能開發(fā)出一個金屬板在級進模中的工步排樣設(shè)計自動化的專家系統(tǒng),所提出的系統(tǒng)的簡要描述如下。表 2–典型的提示,用戶的反應(yīng)和專家的建議是在專家系統(tǒng)執(zhí)行例如組件(圖 2)的過程中產(chǎn)生的提示 示例數(shù)據(jù)輸入 對用戶的建議請輸入薄板材料 黃銅 毛胚模型使用 AutoCAD 命令請輸入薄板厚度(mm ) 0.6 請輸入 OPRPLAN 命令OPRPLAN —— 歡迎來到 OPRPLAN 模塊,此開發(fā)用于識別操作輸入進給類型 自動 ——帶料是否翹曲? 否 請以問卷的形式輸入零件的幾 何特征(是/ 否)外部邊界或輪廓是否存在小切口或缺口? 是 ——是否存在孔或槽或內(nèi)部輪廓切割? 是 ——薄板邊緣是否粗糙? 否 ——沿著直線軸是否存在彎曲? 否 ——是否存在彎曲或成型? 否 ——是否要求在毛胚的任一邊完整切割? 是以下操作是必需的——開槽,沖孔、切斷。請輸入 OPRSEQ命令OPRSEQ ——歡迎來 OPRSEQ 模塊,此模塊的開發(fā)是用于識別操作順序的正確性。操作順序如下:第一,沖孔;第二,開槽;第三,切斷。請輸入 PLTSEL 命令 6PLTSEL —— 歡迎來到 PLTSEL 模塊,此模塊是用于選擇導(dǎo)向方案工件上是否存在任何折疊部分? 否 ——輸入孔的指定公差 0.05 ——孔是否位于工件的兩側(cè) 是選擇工件兩側(cè)上最大的孔作為導(dǎo)向孔,請輸入 OPRSTAGE 命令OPRSTAGE ——歡迎來到 OPRSTAGE 模塊,此模塊用于工位數(shù)的確定和級進模的分段操作。請輸入OPRSTAGE1 命令OPRSTAGE1 —— ——孔與孔之間的中心距是否在±0.05mm 范圍? 是 在同一工位上沖這些孔工件上外輪廓是否存在復(fù)雜的或薄弱部分 否 ——內(nèi)部特征邊緣之間的和模塊邊緣最小距離是否<2.0 倍薄板厚度(但不能小于3.00mm)?”R” 工件在為來工程中是否有變更的可能?否 請輸入 OPRSTAGE2 命令OPRSTAGE2輸入工件上槽的數(shù)量 2 ——輸入工件上的孔數(shù) 2所需的工位數(shù)=5。分段操作的首選:第一工位:沖孔;第二工位:沖孔、開槽和導(dǎo)向;第三工位:開槽和導(dǎo)向;第四工位:開槽和導(dǎo)向;第五工位:切斷。請輸入 SWLSEL 命令。SWLSEL —— 歡迎來到 SWLSEL 模塊,此模塊用于確定帶鋼寬度和進給的 7距離輸入毛胚輪廓寬度(mm) 62.0 ——輸入薄片鋒利的邊緣方向(沿板寬)垂直于帶材的移動方向 選擇帶料寬度=65.2mm輸入毛胚輪廓長度(mm) 12.7 ——輸入移動薄板的鋒利的邊緣方向(沿板的長度)平行于帶材的移動方向選擇進給距離(或間距)=14.7mm,命令請輸入STRPLYTSTRPLYT ——歡迎來到 STRPLYT 模塊,此模塊是為工步排樣自動建模而開發(fā)的選擇一個起點 (220,100) 系統(tǒng)工步排樣建模在 AutoCAD的繪圖編輯器上顯示3 所提出的系統(tǒng)的開發(fā)和執(zhí)行所提出的系統(tǒng)每一模塊的知識的獲得有各種來源(Kumar et al .,2006),包括經(jīng)驗豐富的模具設(shè)計師,車間工程師、模具設(shè)計手冊、期刊研究、手冊和工業(yè)手冊。從各種來源收集來的設(shè)計資料通過 IF-THEN 變化,構(gòu)造成適合生產(chǎn)規(guī)則的有用知識。為了簡便,所提出的系統(tǒng)把成套的生產(chǎn)規(guī)則知識庫為六個模塊,即 OPRPLAN, OPRSEQ, PLTSEL, OPRSTAGE, SWLSEL and STRPLYT。每個模塊生產(chǎn)規(guī)則的制定都會經(jīng)過其他團隊的模具設(shè)計專家使用 IF-THEN 規(guī)則中的 IF 條件假設(shè)進行反復(fù)驗證。一個樣本經(jīng)過制定和驗證;然后納入該系統(tǒng)各模塊的功能是表 1 中給出。所提出的系統(tǒng)的生產(chǎn)規(guī)則的序列是非結(jié)構(gòu)化的,這種安排甚至允許專業(yè)知識相對較少的工程師插入新的規(guī)則。這些用 AutoLISP 語言編碼,同樣它可以在 AutoCAD 界面上進行工步排樣建模。通過推理機制的正向推理把生產(chǎn)規(guī)則和系統(tǒng)的知識庫聯(lián)系在一起。系統(tǒng)的知識庫中包括 300多個種類的 IF-THEN 規(guī)則。然而,系統(tǒng)是足夠靈活的,因為知識庫可以更新和修改,如果有必要,在技術(shù)上提升和使用車間里的可用的新設(shè)備。系統(tǒng)的執(zhí)行如流程圖圖 1 所示。系統(tǒng)要求用戶在模型的空白處使用 AutoCAD 指令。隨后用戶在 AutoCAD 提示區(qū)輸入零件數(shù)據(jù)信息,如薄板厚度、薄板材料等。系統(tǒng)會自動將這些零件數(shù)據(jù)存儲在一個零件數(shù)據(jù)文件上并標記為 COMP.DAT。系統(tǒng)的第一個模塊 OPRPLAN 確定零件加工所需的金屬板操作類型。該模塊需要用戶輸入相關(guān)數(shù)據(jù), 8即零件的尺寸公差和幾何特征。這個模塊的輸出是零件制造所需的金屬板操作推薦的類型。下一個模塊 OPRSEQ 決定鈑金操作推薦的順序。它直接從 OPRPLAN 模塊在執(zhí)行過程中生成出數(shù)據(jù)文件 OPRPLAN.DAT 獲取所需要的輸入數(shù)據(jù)。 PLTSEL 模塊的開發(fā)是為了選擇適當?shù)膶?dǎo)向方案以便級進模在每一個工位上精確定位。下一個模塊OPRSTAGE 的開發(fā)是用于獲得專家建議的工位數(shù)量和對級進模分階段操作的首選操作。這個模塊數(shù)據(jù)的輸入是從 OPRSEQ 模塊在執(zhí)行過程中生成的輸出數(shù)據(jù)文件OPRSEQ.DAT 中獲取。并請用戶須輸入特定的工作數(shù)據(jù)如作為零件的特征。模塊SWLSEL 決定金屬板料合適的尺寸大小。建模模塊 STRPLYT 在 AutoCAD 繪圖編輯上刪除任何以前的存在圖以及選擇合適的屏幕進行工步排樣建模。接下來,它要求用戶在 AutoCAD 屏幕上選擇起始點。當用戶使用光標選擇起始點或在 AutoCAD 提示區(qū)中鍵入,模塊 STRPLYT 自動在 AutoCAD 繪圖編輯器中進行工步排樣建模。4 驗證所提出的系統(tǒng)所提出的系統(tǒng)已經(jīng)測試了不同類型的鈑金件工步排樣設(shè)計的問題。典型的提示,例如用戶在組件的系統(tǒng)執(zhí)行過程中,用戶的反應(yīng)和獲得的建議(圖 2)是通過表 2 給出的。系統(tǒng)工步排樣的生成見圖 3。輸出的數(shù)據(jù)是從各種系統(tǒng)模塊得到的。這些形式如模塊的識別操作,排序操作,導(dǎo)向方案的選擇,所需工位數(shù),工序的分階段操作和帶料的尺寸與那些這經(jīng)驗豐富的模具設(shè)計人員和工藝規(guī)劃者在工作實踐中的得到的數(shù)據(jù)十分相似且合理,在沖壓行業(yè)即稱為 Indo Asian Fuse Gear Limited,由 Murthal、哈里亞納邦、印度等組成。工步排樣由開發(fā)系統(tǒng)生成圖紙,同時也和模具設(shè)計師豐富經(jīng)驗有密切聯(lián)系。5 結(jié)論研究工作已被應(yīng)用于鈑金級進模工步排樣設(shè)計自動化。生產(chǎn)的基于規(guī)則的專家系統(tǒng)方法已被用于所提出的智能系統(tǒng)的開發(fā)。生產(chǎn)規(guī)則使用 AutoLISP 語言進行編碼來構(gòu)建基本知識系統(tǒng),因為它可以在 AutoCAD 界面進行工步排樣建模。系統(tǒng)能夠傳授專家建議的零件制造要求所需的鈑金操作類型, 操作排序,選擇適當?shù)膶?dǎo)向方案,需要的工位數(shù)和級進模第一分段的操作;以及選擇合適大小的帶料。最后,根據(jù)系統(tǒng)生成的輸出模塊,系統(tǒng)能夠在 AutoCAD 繪圖編輯器上自動建立工步排樣模型。該系統(tǒng)的運行示例使用工業(yè)鈑金件已經(jīng)證明了系統(tǒng)的實用性。該系統(tǒng)是靈活的,具有實現(xiàn)成本也可以在 PC 機具有 AutoCAD 軟件操作。小型鈑金行業(yè)使用此系統(tǒng)的費用很容易負擔得起的。 9 10參考文獻 [1] Adachi,M., Inoue, K., Funayama, T.,1983. Integrated CAD system for progressive dies. Fujitsu Sci. Tech. J.19(2),133–148.[2] Chu, C.Y., Tor, S.B., Britton, G.A.,2004. A graph theoretic approach for stamping operations sequencing. Proc. Inst. Mech. Eng.Part B: J. Eng. Manuf.218,467–471.[3] Duffy, M.R., Sun, Q.,1991. Knowledge-based design of progressive stamping dies. J. Mater. Process. Technol.28,221–227.[4] Kim, C., Park, Y.S., Kim, J.H., Choi, J.C.,2002. A study on the development of computer-aided process planning system for electric product with bending and piercing operations. J.Mater. Process. Technol.130–131,626–631.[5] Kumar, S., Singh, R., Sekhon, G.S.,2006. CCKBS: a component check knowledge-based system for assessing manufacturability of sheet metal parts. J. Mater. Process.Technol.172, 64–69.[6] Li, J.Y., Nee, A.Y.C., Cheok, B.T.,2002. Integrated feature-based modeling and process planning of bending operations in progressive die design. Int. J. Adv. Manuf. Technol.20,883–895.[7] Nee, A.Y.C., 1984a. A heuristic algorithm for optimum layout of metal stamping blanks. Ann. CIRP 33,317–320.Nee, A.Y.C.,1984b. Computer aided layout of metal stamping blanks. Proc. Inst. Mech. Eng., Part B: J. Eng. Manuf.198(10),187–194.[8] Nee, A.Y.C., 1984a. A heuristic algorithm for optimum layout of metal stamping blanks. Ann. CIRP 33,317–320.[9] Nee, A.Y.C.,1984b. Computer aided layout of metal stamping blanks. Proc. Inst. Mech. Eng., Part B: J. Eng. Manuf.198(10),187–194.[10] Nee, A.Y.C.,1985. A micro-computer based blank layout solution for metal stamping. Sheet Met. Ind.62(3),156–160.Prasad, Y.K.D.V., Somasundaram, S.,1992. CADDS: an automated die design system for sheet metal blanking. Comput. Contr.Eng. J.3,185–191.[11] Ridha, H.,2003. BLANKSOFT: a code for sheet metal blanking processes optimization. J. Mater. Process. Technol.141,234–242.[12] Schaffer, G., 1971. Computer designs progressive dies. Am.Machinist 22,73–75.[13] Singh, R., Sekhon, G.S.,2001. A low cost modeler for optimal stamping layouts for sheet metal operations. In: Proceedings of the Ninth International Conference on Sheet Metal(She-Met 2001), Katholic Universit, Leuve, Belgiu, April 2–4, p,363–370.[14] Tor, S.B., Britton, G.A., Zhang, W.Y.,2005. Development of an object-oriented blackboard model 11for stamping process planning in progressive die design. J. Intell. Manuf.16,499–513.[15] Venkata Rao, R.,2004. Evaluation of metal stamping layouts using an analytic hierarchy process method. J. Mater. Process.Technol.152,71–76. 12附 錄圖 2 示例組件(黃銅,板材厚度= 0.6 毫米)圖 3 系統(tǒng)所提出的工步排樣,例如組件
收藏