1914_機械廠變電所的電氣設計
1914_機械廠變電所的電氣設計,機械廠,變電所,電氣設計
畢業(yè)設計文獻綜述院 ( 系 ) 名 稱 工 學 院 機 械 系專 業(yè) 名 稱 機 械 設 計 制 造 及 其 自 動 化學 生 姓 名 史 煒 指 導 教 師 穆 國 華 2012 年 03 月 10 日黃 河 科 技 學 院 畢 業(yè) 設 計 (文 獻 綜 述 ) 第 1 頁 機械廠變電所電氣設計綜述1 序言電能是發(fā)展國民經(jīng)濟的基礎,是一種無形的、不能大量存儲的二次能源,同時也是現(xiàn)代社會中最重要也是最方便的能源。隨著工業(yè)時代的發(fā)展,電力已成為人類歷史發(fā)展的主要動力資源。要科學合理的駕馭電力,必須從電力工程的設計原則和方法上理解和掌握其精髓,提高電力系統(tǒng)的安全可靠性和運行效率,從而達到降低生產(chǎn)成本提高經(jīng)濟效益的目的。變電所是電力系統(tǒng)的重要組成部分,它直接影響整個電力系統(tǒng)的安全與經(jīng)濟運行,是聯(lián)系發(fā)電廠和用戶的中間環(huán)節(jié),起著變換和分配電能的作用。本次設計將是對我所學知識進行的一次實踐,使我所學的專業(yè)知識得到鞏固和加深。2 變電所主體設計2.1 變電所設計的基本原則變電所是聯(lián)系發(fā)電廠和用戶的中間環(huán)節(jié),起著變換和分配電能的作用。因此,變電所的作用顯得尤為重要。首先要滿足的就是變電所的設計規(guī)范,安全可靠地發(fā)、供電是對電力系統(tǒng)運行的首要要求。1、變電所的設計要認真執(zhí)行國家的有關技術經(jīng)濟政策,符合安全可靠、技術先進和經(jīng)濟合理的要求。2、變電所的設計應根據(jù)工程的 5-10 年發(fā)展規(guī)劃進行,做到遠、近期結合,以近期為主,正確處理近期建設與遠期發(fā)展的關系,適當考慮擴建的可能。3、變電所的設計,必須從全局出發(fā),統(tǒng)籌兼顧,按照負荷性質、用電容量、工程特點和地區(qū)供電條件,結合國情合理的確定設計方案。4、變電所的設計,必須堅持節(jié)約用地的原則。2.2 變電所所址的選擇原則1、盡量接近負荷中心。2、進出線方便,特別是要便于架空進出線。3、接近電源側,特別是工廠的總降壓變電所和高壓配電所。4、設備運輸方便。黃 河 科 技 學 院 畢 業(yè) 設 計 (文 獻 綜 述 ) 第 2 頁 5、不應設在有劇烈振動或高溫的場所,無法避開時,應有防振和隔熱措施。6、不宜設在多塵或有腐蝕性氣體的場所。7、不應設在廁所、浴室和其他經(jīng)常積水場所的正下方,且不宜與上述場所相貼鄰。8、不應設在有爆炸危險環(huán)境的正上方或正下方,且不宜設在有火災危險環(huán)境的正上方或正下方。9、不應設在地勢低洼和可能積水的場所。2.3 變壓器的選擇2.3.1 變電所主變壓器臺數(shù)的選擇原則1、應滿足用電負荷對供電可靠性的要求。對供有大量一、二級負荷的變電所,應采用兩臺變壓器,以便當一臺變壓器發(fā)生故障或檢修時,另一臺變壓器能對一、二級負荷繼續(xù)供電。對只有二級而無一級負荷的變電所,也可以只采用一臺變壓器,但必須在低壓側敷設與其他變電所相聯(lián)的聯(lián)絡線作為備用電源,或另有自備電源。2、對季節(jié)性負荷或晝夜負荷變動較大而宜于采用經(jīng)濟運行方式的變電所,也可考慮采用兩臺變壓器。3、除上述兩種情況外,一般車間變電所宜采用一臺變壓器。但是負荷集中且容量相當大的變電所,雖為三級負荷,也可以采用兩臺或多臺變壓器。4、在確定變電所主變壓器臺數(shù)時,應適當考慮負荷的發(fā)展,留有一定的余地。2.3.2 變電所主變壓器容量的選擇1、主變壓器容量應滿足全部用電設備總計算負荷的需要。2、車間變電所主變壓器的單臺容量,一般不宜大于1000kV·A(或1250kV·A) 。3、適當考慮今后5~10年電力負荷的發(fā)展,留有一定余地。2.4 電氣主接線方案的選定電氣主接線是整個變電所電氣部分的主干。變電所電氣主接線指的是變電所中匯集、分配電能的電路,通常稱為變電所一次接線,是由變壓器、斷路器、隔離開關、互感器、母線、避雷器等電氣設備按一定順序連接而成的,是電力系統(tǒng)總體設計的重要組成部份。變電所主接線形式應根據(jù)變電所在電力系統(tǒng)中的地位、作用、回路數(shù)、設黃 河 科 技 學 院 畢 業(yè) 設 計 (文 獻 綜 述 ) 第 3 頁 備特點及負荷性質等條件確定,并且應滿足運行可靠、簡單靈活、操作方便和節(jié)約投資等要求。主接線設計的基本要求為:(1)供電可靠性。發(fā)電廠和變電站是電力系統(tǒng)的重要組成部分,其主接線的可靠性應與系統(tǒng)的要求相適應。當系統(tǒng)發(fā)生故障時,要求停電范圍小,恢復供電快。(2)適應性和靈活性。能適應一定時期內沒有預計到的負荷水平變化;改變運行方式時操作方便,便于變電站的擴建。(3)經(jīng)濟性。在確保供電可靠、滿足電能質量的前提下,要盡量節(jié)省建設投資和運行費用,減少用地面積。(4)簡化主接線。復雜的主接線不利于倒閘操作,且容易造成誤操作,導致事故的發(fā)生。配網(wǎng)自動化、變電站無人化是現(xiàn)代電網(wǎng)發(fā)展必然趨勢。簡化主接線為這一技術的全面實施,創(chuàng)造更為有利的條件。(5)設計標準化。同類型變電站采用相同的主接線形式,可使主接線規(guī)范化、標準化,有利于系統(tǒng)運行和設備檢修。電氣主接線方案的選定對變電所電氣設備的選擇,現(xiàn)場布置,保護與控制所采取的方式,運行的可靠性、靈活性、經(jīng)濟性,檢修、運行維護的安全性等,都有直接的影響。因此,選擇優(yōu)化的電氣主接線方式,具有特別重要的意義。3 電氣設備的選擇3.1 導體和電器的選擇原則1、力求技術先進,安全適用,經(jīng)濟合理。2、滿足正常運行,檢修,短路,過電壓情況下的要求,并考慮遠景發(fā)展。3、應按當?shù)丨h(huán)境條件校準。4、選擇的導體品種不宜過多。5、應與整個工程建設標準協(xié)調一致。6、選用新產(chǎn)品應積極慎重,新產(chǎn)品應有可靠的試驗數(shù)據(jù),并經(jīng)主管單位鑒定合格。3.2 隔離開關的配置1、中小型發(fā)電機出口一般應裝設隔離開關;容量為 220MW 及以上大機組與雙繞組變壓器為單元連接時,其出口不裝設隔離開關,但應有可拆連接點。黃 河 科 技 學 院 畢 業(yè) 設 計 (文 獻 綜 述 ) 第 4 頁 2、在出線上裝設電抗器的 6—10KV 配電裝置中,當向不同用戶供電的兩回線共用一臺斷路器和一組電抗器時,每回線上應各裝設一組出線隔離開關。3、接在母線上的避雷器和電壓互感器宜合用一組隔離開關。4、中性點直接接地的普通變壓器中性點應通過隔離開關接地,自藕變壓器中性點則不必裝設隔離開關。3.3 電壓互感器的配置1、電壓互感器的數(shù)量和配置與主接線方式有關,并應滿足測量、保護、同期和自動裝置的要求。電壓互感器的配置應能保證在運行方式改變時,保護裝置不得失壓,同期點的兩側都能提取到電壓。2、6-220KV 電壓等級的每一組主母線的三相上應裝設電壓互感器。旁路母線上是否需要裝設電壓互感器,應視各回出線外側裝設電壓互感器的情況和需要確定。3、當需要監(jiān)視和檢測線路側有無電壓時,出線側的一相上應裝設電壓互感器。4、發(fā)電機出口一般裝設兩組電壓互感器。3.4 電流互感器的配置1、凡是裝設斷路器的回路均應裝設電流互感器,其數(shù)量應滿足測量、保護和自動裝置的需要。2、在未設斷路器的下列地點也應裝設電流互感器:發(fā)電機變壓器中性點、發(fā)電機和變壓器的出口、橋形接線的跨條上等。3、中性點直接接地系統(tǒng)一般按三相配置;非直接接地系統(tǒng)根據(jù)需要按兩相或三相配置。4、一臺半斷路器接線中,線路—線路串根據(jù)需要裝設 3-4 組電流互感器,線路—變壓器串,如果變壓器套管電流互感器可以利用時,可裝設三組電流互感器。3.5 避雷器的裝置1、配電裝置的每組母線上應裝設避雷器,但進出線裝設避雷器時除外。2、旁路母線上是否裝設避雷器視其運行時避雷器到被保護設備的電氣距離是否滿足要求而定。3、220KV 及以下變壓器到避雷器的電氣距離超過允許值時,應在變壓器附近增設一組避雷器。黃 河 科 技 學 院 畢 業(yè) 設 計 (文 獻 綜 述 ) 第 5 頁 4、三繞組變壓器低壓側的一相上宜設置一臺避雷器。4 防雷和接地變電所的防雷設計應做到設備先進、保護動作靈敏、安全可靠、維護試驗方便,并在保證可靠性的前提下力求經(jīng)濟性。防止雷電直擊的主要電氣設備是避雷針,避雷針由接閃器和引下線、接地裝置三部分構成。避雷針位置的確定,是變電所防雷設計的關鍵步驟。首先應根據(jù)變電所電氣設備的總平面布置圖確定,避雷針的初步選定安裝位置與設備的電氣距離應符合各種規(guī)程范圍的要求,初步確定避雷針的安裝位置后再根據(jù)公式進行校驗,是否在保護范圍之內。同時做好變電站的接地電網(wǎng),也可以有效的防止電力事故的發(fā)生。5 繼電保護在電力系統(tǒng)的運行中,變電所可能出現(xiàn)各種故障和不正常運行狀態(tài)。最常見同時也是最危險的故障是各種類型的短路,其中包括相間短路和接地短路。此外,還可能發(fā)生輸電線路斷線,旋轉電機、變壓器同一繞組的匝間短路等。這樣供電系統(tǒng)就不能順利完成輸送電,此時繼電保護就很重要。繼電保護系統(tǒng)主要有保護作用、控制作用 、監(jiān)視作用 、事故分析與事故處理作用、自動化作用。繼電保護裝置在電力系統(tǒng)中的主要作用是通過預防事故或縮小事故范圍來提高系統(tǒng)可靠性,是電力系統(tǒng)中重要的組成部分,是保證電力系統(tǒng)安全可靠運行的重要技術措施之一。在現(xiàn)在的電力系統(tǒng)中,如果沒有繼電保護裝置,就無法維持系統(tǒng)正常運行。6 結語電網(wǎng)運行的最基本要求是安全與穩(wěn)定,電網(wǎng)安全穩(wěn)定的核心問題是要建立一個與該供電網(wǎng)絡相適應的合理的電網(wǎng)結構。變電所是電力系統(tǒng)中變換電壓、接受和分配電能、控制電力的流向和調整電壓的電力設施,通過其變壓器將各級電壓的電網(wǎng)聯(lián)系起來。建設變電站時,在保證安全的前提下還要保證其經(jīng)濟性和靈活性。隨著電力人不斷的努力,變電站的設計一定會不斷完善的。黃 河 科 技 學 院 畢 業(yè) 設 計 (文 獻 綜 述 ) 第 6 頁 參考文獻[1] 肖艷萍 . 發(fā)電廠變電站電氣設備. 中國電力出版社[2] 孟祥萍等 . 電力系統(tǒng)分析. 高等教育出版社[3] 常美生等 . 高電壓技術. 高等教育出版社[4] 張保會等 . 電力系統(tǒng)繼電保護. 中國電力出版社[5] 余建明 . 供電技術. 機械工業(yè)出版社[6] 劉介才 . 工廠供電(第 5 版). 機械工業(yè)出版社 [7] 許珉等 . 發(fā)電廠電氣主系統(tǒng). 機械工業(yè)出版社 [8] 馬誌溪 . 電氣工程設計. 機械工業(yè)出版社黃 河 科 技 學 院 畢 業(yè) 設 計 (文 獻 翻 譯 ) 第 1 頁 變壓器1、介紹要從遠端發(fā)電廠輸送電能,必須應用高壓輸電。從某種意義上說這個高電壓必須降低,因為它最終是要提供給負載。變壓器能使電力系統(tǒng)各個部分運行在不同的電壓等級。本文我們討論電力變壓器的原理和應用。2、雙繞組變壓器變壓器最簡單的形式是兩個磁通相互耦合的固定線圈。兩個線圈之所以相互耦合,是因為它們連接著共同的磁通。在電力應用中,使用層式鐵芯變壓器(本文中提到的)。變壓器是高效率的,因為它沒有旋轉損失,因此在電壓等級轉換的過程中,能量損失比較少。典型的效率范圍在92%到 99%,上限值適用于大功率電力變壓器。電流從交流電源流入的一側被稱為變壓器的一次側繞組或者是原邊。它在鐵圈中建立了磁通 φ,它的幅值和方向都會發(fā)生周期性的變化。磁通連接的第二個繞組被稱為變壓器的二次繞組或者是副邊。磁通是變化的,因此依據(jù)楞次定律,電磁感應在二次側產(chǎn)生了電壓。變壓器在原邊接收電能的同時也在向副邊所帶的負荷輸送電能。這就是變壓器的作用。3、變壓器的工作原理當二次側電路是開路的情況下,即使原邊被施以正弦電壓 vp,也是沒有能量轉移的。外加電壓在一次側繞組中產(chǎn)生一個小電流 Iθ。這個空載電流有兩項功能:(1)在鐵芯中產(chǎn)生電磁通,該磁通在零和 φm 之間做正弦變化, φm 是鐵芯磁通的最大值;?(2)它的一個分量說明了鐵芯中的渦流和磁滯損耗。這兩種相關的損耗被稱為鐵芯損耗。變壓器空載電流 Iθ一般大約只有滿載電流的 2%—5%。因為在空載時,原邊繞組中的鐵芯相當于一個很大的電抗,空載電流的相位大約將滯后于原邊電壓相位 90o。顯然可見電流分量 Im= I0sinθ0,被稱做勵磁電流,它在相位上滯后于原邊電壓 VP 90o。就是這個分量在鐵芯中建立了磁通;因此磁通 φ 與 Im 同相。黃 河 科 技 學 院 畢 業(yè) 設 計 (文 獻 翻 譯 ) 第 2 頁 第二個分量 Ie=I0sinθ0,與原邊電壓同相。這個電流分量向鐵芯提供用于損耗的電流。兩個相量的分量和代表空載電流,即I0 = Im+ Ie應注意的是空載電流是畸變和非正弦形的。這種情況是非線性鐵芯材料造成的。如果假定變壓器中沒有其他的電能損耗,一次側的感應電動勢 Ep 和二次側的感應電壓 Es 可以表示出來。因為一次繞組中的磁通會通過二次繞組,依據(jù)法拉第電磁感應定律,二次側繞組中將產(chǎn)生一個電動勢 E,即 E=NΔφ/Δt。相同的磁通會通過原邊自身,產(chǎn)生一個電動勢 Ep。正如前文中討論到的,所產(chǎn)生的電壓必定滯后于磁通 90o,因此,它于施加的電壓有 180o 的相位差。因為沒有電流流過二次側繞組,E s=Vs。一次側空載電流很小,僅為滿載電流的百分之幾。因此原邊電壓很小,并且 Vp 的值近乎等于 Ep。原邊的電壓和它產(chǎn)生的磁通波形是正弦形的;因此產(chǎn)生電動勢 Ep 和 Es 的值是做正弦變化的。產(chǎn)生電壓的平均值如下Eavg = turns× 給 定 時 間 內 磁 通 變 化 量給 定 時 間即是法拉第定律在瞬時時間里的應用。它遵循Eavg = N = 4fNφm21/()f?其中 N 是指線圈的匝數(shù)。從交流電原理可知,有效值是一個正弦波,其值為平均電壓的 1.11 倍;因此E = 4.44fNφm因為一次側繞組和二次側繞組的磁通相等,所以繞組中每匝的電壓也相同。因此Ep = 4.44fNpφm并且Es = 4.44fNsφm其中 Np 和 Es 是一次側繞組和二次側繞組的匝數(shù)。一次側和二次側電壓增長的比率稱做變比。用字母 a 來表示這個比率,如下式a = = psEsN假設變壓器輸出電能等于其輸入電能——這個假設適用于高效率的變壓器。實際上我們是考慮一臺理想狀態(tài)下的變壓器;這意味著它沒有任何損耗。因此黃 河 科 技 學 院 畢 業(yè) 設 計 (文 獻 翻 譯 ) 第 3 頁 Pm = Pout或者VpIp × primary PF = VsIs × secondary PF這里 PF 代表功率因素。在上面公式中一次側和二次側的功率因素是相等的;因此VpIp = VsIs從上式我們可以得知= ≌ ≌ apsIpsE它表明端電壓比等于匝數(shù)比,換句話說,一次側和二次側電流比與匝數(shù)比成反比。匝數(shù)比可以衡量二次側電壓相對于一次側電壓是升高或者是降低。為了計算電壓,我們需要更多數(shù)據(jù)。終端電壓的比率變化有些根據(jù)負載和它的功率因素。實際上, 變比從標識牌數(shù)據(jù)獲得, 列出在滿載情況下原邊和副邊電壓。當副邊電壓 Vs 相對于原邊電壓減小時,這個變壓器就叫做降壓變壓器。如果這個電壓是升高的,它就是一個升壓變壓器。在一個降壓變壓器中傳輸變比 a 遠大于1(a>1.0),同樣的,一個升壓變壓器的變比小于 1(a<1.0)。當 a=1 時,變壓器的二次側電壓就等于一次側電壓。這是一種特殊類型的變壓器,可被應用于當一次側和二次側需要相互絕緣以維持相同的電壓等級的狀況下。因此,我們把這種類型的變壓器稱為絕緣型變壓器。顯然,鐵芯中的電磁通形成了連接原邊和副邊的回路。在第四部分我們會了解到當變壓器帶負荷運行時一次側繞組電流是如何隨著二次側負荷電流變化而變化的。從電源側來看變壓器,其阻抗可認為等于 Vp / Ip。從等式 = ≌ ≌ a 中psVsIpsE我們可知 Vp = aVs 并且 Ip = Is/a。根據(jù) Vs 和 Is,可得 Vp 和 Ip 的比例是= = pI/sa2sI但是 Vs / Is 負荷阻抗 ZL,因此我們可以這樣表示Zm (primary) = a2ZL這個等式表明二次側連接的阻抗折算到電源側,其值為原來的 a2 倍。我們把這種折算方式稱為負載阻抗向一次側的折算。這個公式應用于變壓器的阻抗匹配。黃 河 科 技 學 院 畢 業(yè) 設 計 (文 獻 翻 譯 ) 第 4 頁 4、有載情況下的變壓器一次側電壓和二次側電壓有著相同的極性,一般習慣上用點記號表示。如果點號同在線圈的上端,就意味著它們的極性相同。因此當二次側連接著一個負載時,在瞬間就有一個負荷電流沿著這個方向產(chǎn)生。換句話說,極性的標注可以表明當電流流過兩側的線圈時,線圈中的感應電動勢會增加。因為二次側電壓的大小取決于鐵芯磁通大小 φ0,所以很顯然當正常情況下負載電勢 Es 沒有變化時,二次側電壓也不會有明顯的變化。當變壓器帶負荷運行時,將有電流 Is 流過二次側,因為 Es 產(chǎn)生的感應電動勢相當于一個電壓源。二次側電流產(chǎn)生的磁動勢 NsIs 會產(chǎn)生一個勵磁。這個磁通的方向在任何一個時刻都和主磁通反向。當然,這是楞次定律的體現(xiàn)。因此,N sIs 所產(chǎn)生的磁動勢會使主磁通 φ0 減小。這意味著一次側線圈中的磁通減少,因而它的電壓 Ep 將會增大。感應電壓的減小將使外施電壓和感應電動勢之間的差值更大,它將使初級線圈中流過更大的電流。初級線圈中的電流 Ip的增大,意味著前面所說明的兩個條件都滿足:(1)輸出功率將隨著輸出功率的增加而增加(2)初級線圈中的磁動勢將增加,以此來抵消二次側中的感應電動勢減小磁通的趨勢??偟膩碚f,變壓器為了保持磁通是常數(shù),對磁通變化的響應是瞬時的。更重要的是,在空載和滿載時,主磁通 φ0 的降落是很少的(一般在 1 至 3%) 。其需要的條件是E 降落很多來使電流 Ip 增加。在一次側,電流 Ip’在一次側流過以平衡 Is 產(chǎn)生的影響。它的磁動勢 NpIp’只停留在一次側。因為鐵芯的磁通 φ0 保持不變,變壓器空載時空載電流 I0 必定會為其提供能量。故一次側電流 Ip 是電流 Ip’與 I0’的和。因為空載電流相對較小,那么一次側的安匝數(shù)與二次側的安匝數(shù)相等的假設是成立的。因為在這種狀況下鐵芯的磁通是恒定的。因此我們仍舊可以認定空載電流 I0 相對于滿載電流是極其小的。當一個電流流過二次側繞組,它的磁動勢(N sIs)將產(chǎn)生一個與二次側繞組 I0 產(chǎn)生的 φ0 磁通相獨立的磁通。因為這個磁通不通過一次側繞組,所以它不是一個互感磁通。黃 河 科 技 學 院 畢 業(yè) 設 計 (文 獻 翻 譯 ) 第 5 頁 另外,流過一次側繞組的負載電流產(chǎn)生一個只和一次側繞組相交鏈的磁通,這個磁通被稱為一次側的漏磁量。二次側漏磁量產(chǎn)生的感應電壓不能與一次側漏磁量所產(chǎn)生的感應電壓相平衡。同樣的,一次側漏磁量產(chǎn)生的感應電壓也與二次側所產(chǎn)生的不平衡。因此,這兩個感應電壓作用表現(xiàn)為電壓降落,通常被稱為電抗壓降。另外,兩側繞組同樣具有電阻,這也將產(chǎn)生一個電阻壓降。把這些額外的電壓降也考慮在內,這樣一個實際變壓器的等效電路圖就完成了。需要注意,電路中的勵磁支路勵磁影響較小,在分析中我們可以將它忽略。這就符我們前面計算中可以忽略空載電流的假設。為達到精確度,這對進一步合理預測變壓器性能是必須的。因為壓降與負載電流成正比關系,這就意味著空載情況下一次側和二次側繞組沒有壓降。畢業(yè)設計文獻翻譯院 ( 系 ) 名 稱 工 學 院 機 械 系專 業(yè) 名 稱 機 械 設 計 制 造 及 其 自 動 化學 生 姓 名 史 煒 指 導 教 師 穆 國 華 2012 年 03 月 10 日 黃河科技學院畢業(yè)設計 ( 外文翻譯 ) 第 1 頁 TRANSFORMER 1. INTRODUCTION The high-voltage transmission is requied in the case that electrical power is to be provided at considerable distance from a generating station. At some point this high voltage must be reduced, because it ultimately is must supplied to a load. The transformer makes it possible for various parts of a power system to operate at different voltage levels. In this paper we discuss the principles and applications of power transformer. 2. TOW - WINDING TRANSFORMERS A simplest transformer consists of two stationary coils coupled by a mutual magnetic flux. The coils are said to be mutually coupled because they link a common flux. In power applications, laminated steel core transformers (to which this paper is restricted) are used. Transformers are efficient because the rotational losses normally associated with rotating machine are absent, so relatively little power is lost when transforming power from one voltage level to another. Typical efficiencies are in the range 92 to 99%, the higher values applying to the larger power transformers. The current flowing in the coil connected to the ac source is called the primary winding or simply the primary. It sets up the flux f in the core, which varies periodically both in magnitude and direction. The flux links the second coil, called the secondary winding or simply secondary. The flux is changing; therefore, it induces a voltage in the secondary by electromagnetic induction in accordance with Lenz’s law. Thus the primary receives its power from the source while the secondary supplies this power to the load. This action is known as transformer action. 黃河科技學院畢業(yè)設計 ( 外文翻譯 ) 第 2 頁 3. TRANSFORMER PRINCIPLES When a sinusoidal voltage Vp is applied to the primary with the secondary open-circuited, there will be no energy transfer. The impressed voltage causes a small current I? to flow in the primary winding. This no-load current has two functions: (1) it produces the magnetic flux in the core, which varies sinusoidally between zero and ± fm, where f m is the maximum value of the core flux; and (2) it provides a component to account for the hysteresis and eddy current losses in the core. There combined losses are normally referred to as the core losses. The no-load current I? is usually few percent of the rated full-load current of the transformer (about 2 to 5%). Since at no-load the primary winding acts as a large reactance due to the iron core, the no-load current will lag the primary voltage by nearly 90o. It is readily seen that the current component Im= I0sin? 0, called the magnetizing current, is 90o in phase behind the primary voltage VP. It is this component that sets up the flux in the core; f is therefore in phase with Im. The second component, Ie=I0sin? 0, is in phase with the primary voltage. It is the current component that supplies the core losses. The phasor sum of these two components represents the no-load current, or I0 = Im+ Ie It should be noted that the no-load current is distortes and nonsinusoidal. This is the result of the nonlinear behavior of the core material. If it is assumed that there are no other losses in the transformer, the induced voltage In the primary, Ep and that in the secondary, Es can be shown. Since the magnetic flux set up by the primary winding, there will be an induced EMF E in the secondary winding in accordance with Faraday’s law, namely, E=N?f/?t. This same flux also links the primary itself, inducing in it an EMF, Ep. As discussed earlier, the induced voltage must lag the flux by 90o, therefore, they are 180o out of phase with the applied voltage. Since no current flows in the secondary winding, Es=Vs. The no-load primary current I0 is small, a few percent of full-load current. Thus the voltage in the primary is small and Vp is nearly equal to Ep. The primary voltage and the resulting flux are sinusoidal; thus the induced quantities Ep and Es vary as a sine function. 黃河科技學院畢業(yè)設計 ( 外文翻譯 ) 第 3 頁 The average value of the induced voltage given by Eavg = turns× changeinfluxinagiventimegiventime which is Faraday’s law applied to a finite time interval. It follows that Eavg = N 21/(2)mfj = 4fNf m which N is the number of turns on the winding. Form ac circuit theory, the effective or root-mean-square (rms) voltage for a sine wave is 1.11 times the average voltage; thus E = 4.44fNf m Since the same flux links with the primary and secondary windings, the voltage per turn in each winding is the same. Hence Ep = 4.44fN pf m and Es = 4.44fN sf m where Ep and Es are the number of turn on the primary and secondary windings, respectively. The ratio of primary to secondary induced voltage is called the transformation ratio. Denoting this ratio by a, it is seen that a = psEE = psNN Assume that the output power of a transformer equals its input power, not a bad sumption in practice considering the high efficiencies. What we really are saying is that we are dealing with an ideal transformer; that is, it has no losses. Thus Pm = Pout or VpIp × primary PF = VsIs × secondary PF where PF is the power factor. For the above-stated assumption it means that the power factor on primary and secondary sides are equal; therefore VpIp = VsIs from which is obtained 黃河科技學院畢業(yè)設計 ( 外文翻譯 ) 第 4 頁 psVV = psII ≌ psEE ≌ a It shows that as an approximation the terminal voltage ratio equals the turns ratio. The primary and secondary current, on the other hand, are inversely related to the turns ratio. The turns ratio gives a measure of how much the secondary voltage is raised or lowered in relation to the primary voltage. To calculate the voltage regulation, we need more information. The ratio of the terminal voltage varies somewhat depending on the load and its power factor. In practice, the transformation ratio is obtained from the nameplate data, which list the primary and secondary voltage under full-load condition. When the secondary voltage Vs is reduced compared to the primary voltage, the transformation is said to be a step-down transformer: conversely, if this voltage is raised, it is called a step-up transformer. In a step-down transformer the transformation ratio a is greater than unity (a>1.0), while for a step-up transformer it is smaller than unity (a<1.0). In the event that a=1, the transformer secondary voltage equa ls the primary voltage. This is a special type of transformer used in instances where electrical isolation is required between the primary and secondary circuit while maintaining the same voltage level. Therefore, this transformer is generally knows as an isolation transformer. As is apparent, it is the magnetic flux in the core that forms the connecting link between primary and secondary circuit. In section 4 it is shown how the primary winding current adjusts itself to the secondary load current when the transformer supplies a load. Looking into the transformer terminals from the source, an impedance is seen which by definition equals Vp / Ip. From psVV = psII ≌ psEE ≌ a , we have Vp = aVs and Ip = Is/a.In terms of Vs and Is the ratio of Vp to Ip is ppVI = /ssaVIa = 2 ssaVI But Vs / Is is the load impedance ZL thus we can say that Zm (primary) = a2ZL This equation tells us that when an impedance is connected to the secondary side, it appears from the source as an impedance having a magnitude that is a2 times its actual value. We say 黃河科技學院畢業(yè)設計 ( 外文翻譯 ) 第 5 頁 that the load impedance is reflected or referred to the primary. It is this property of transformers that is used in impedance-matching applications. 4. TRANSFORMERS UNDER LOAD The primary and secondary voltages shown have similar polarities, as indicated by the “dot-making” convention. The dots near the upper ends of the windings have the same meaning as in circuit theory; the marked terminals have the same polarity. Thus when a load is connected to the secondary, the instantaneous load current is in the direction shown. In other words, the polarity markings signify that when positive current enters both windings at the marked terminals, the MMFs of the two windings add. Since the secondary voltage depends on the core flux f 0, it must be clear that the flux should not change appreciably if Es is to remain essentially constant under normal loading conditions. With the load connected, a current Is will flow in the secondary circuit, because the induced EMF Es will act as a voltage source. The secondary current produces an MMF NsIs that creates a flux. This flux has such a direction that at any instant in time it opposes the main flux that created it in the first place. Of course, this is Lenz’s law in action. Thus the MMF represented by NsIs tends to reduce the core flux f 0. This means that the flux linking the primary winding reduces and consequently the primary induced voltage Ep, This reduction in induced voltage causes a greater difference between the impressed voltage and the counter induced EMF, thereby allowing more current to flow in the primary. The fact that primary current Ip increases means that the two conditions stated earlier are fulfilled: (1) the power input increases to match the power output, and (2) the primary MMF increases to offset the tendency of the secondary MMF to reduce the flux. In general, it will be found that the transformer reacts almost instantaneously to keep the resultant core flux essentially constant. Moreover, the core flux f 0 drops very slightly between no load and full load (about 1 to 3%), a necessary condition if Ep is to fall sufficiently to allow an increase in Ip. On the primary side, Ip’ is the current that flows in the primary to balance the demagnetizing effect of Is. Its MMF NpIp’ sets up a flux linking the primary only. Since the 黃河科技學院畢業(yè)設計 ( 外文翻譯 ) 第 6 頁 core flux f 0 remains constant. I0 must be the same current that energizes the transformer at no load. The primary current Ip is therefore the sum of the current Ip’ and I0. Because the no-load current is relatively small, it is correct to assume that the primary ampere-turns equal the secondary ampere-turns, since it is under this condition that the core flux is essentially constant. Thus we will assume that I0 is negligible, as it is only a small component of the full-load current. When a current flows in the secondary winding, the resulting MMF (NsIs) creates a separate flux, apart from the flux f 0 produced by I0, which links the secondary winding only. This flux does no link with the primary winding and is therefore not a mutual flux. In addition, the load current that flows through the primary winding creates a flux that links with the primary winding only; it is called the primary leakage flux. The secondary- leakage flux gives rise to an induced voltage that is not counter balanced by an equivalent induced voltage in the primary. Similarly, the voltage induced in the primary is not counterbalanced in the secondary winding. Consequently, these two induced voltages behave like voltage drops, generally called leakage reactance voltage drops. Furthermore, each winding has some resistance, which produces a resistive voltage drop. When taken into account, these additional voltage drops would complete the equivalent circuit diagram of a practical transformer. Note that the magnetizing branch is shown in this circuit, which for our purposes will be disregarded. This follows our earlier assumption that the no-load current is assumed negligible in our calculations. This is further justified that it is rarely necessary to predict transformer performance to such accuracies. Since the voltage drops are all directly proportional to the load current, it means that at no-load conditions there will be no voltage drops in either winding.
收藏