《中考數(shù)學(xué)總復(fù)習(xí) 第二部分 空間與圖形 第六章 圖形與變換、坐標(biāo) 課時(shí)30 圖形的相似課件.ppt》由會(huì)員分享,可在線閱讀,更多相關(guān)《中考數(shù)學(xué)總復(fù)習(xí) 第二部分 空間與圖形 第六章 圖形與變換、坐標(biāo) 課時(shí)30 圖形的相似課件.ppt(35頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、第二部分空間與圖形,,課時(shí)30圖形的相似,第六章圖形與變換、坐標(biāo),知識(shí)要點(diǎn)梳理,,1. 比例線段:在四條線段中,如果其中兩條線段的比等于另 外兩條線段的比 ,那么這四條線段叫做_____________,簡(jiǎn)稱(chēng)__________. 2. 平行線分線段成比例: (1)定理:兩條直線被一組平行線所截,所得的對(duì)應(yīng)線段__________. (2)推論:平行于三角形一邊的直線截其他兩邊(或兩邊的延長(zhǎng)線),所得的對(duì)應(yīng)線段__________.,成比例線段,比例線段,成比例,成比例,3. 相似圖形: (1)定義:__________的圖形叫做相似圖形. (2)性質(zhì):相似圖形的形狀必須完全___
2、_______;相似圖形的大小__________相同. 4. 相似三角形: 三邊對(duì)應(yīng)__________,三個(gè)角對(duì)應(yīng)__________的兩個(gè)三角形叫做相似三角形. 5. 相似三角形的性質(zhì): (1)相似三角形的對(duì)應(yīng)邊__________,對(duì)應(yīng)角__________.,形狀相同,相同,不一定,成比例,相等,成比例,相等,(2)相似三角形的對(duì)應(yīng)邊的比叫做__________,一般用k表示. (3)相似三角形的對(duì)應(yīng)角平分線、對(duì)應(yīng)邊的__________、對(duì)應(yīng)邊上的__________的比等于__________,周長(zhǎng)之比也等于__________,面積比等于________________. 6.
3、 相似三角形的判定: (1)基本定理:__________于三角形一邊的直線和其他兩邊相交,所構(gòu)成的三角形與原三角形相似. (2)判定定理1:_____________的兩個(gè)三角形相似. (3)判定定理2:___________________________的兩個(gè)三角形相似. (4)判定定理3:_______________的兩個(gè)三角形相似.,相似比,中線,高線,相似比,相似比,相似比的平方,平行,三邊成比例,兩邊對(duì)應(yīng)成比例且?jiàn)A角相等,兩角分別相等,7. 圖形的位似: (1)位似圖形的定義:如果兩個(gè)圖形不僅是__________,而且對(duì)應(yīng)頂點(diǎn)的連線______________,對(duì)應(yīng)邊互相__
4、________,那么這樣的兩個(gè)圖形叫做位似圖形,這個(gè)點(diǎn)叫做__________. (2)位似圖形與坐標(biāo):在平面直角坐標(biāo)系中,如果位似變換是以原點(diǎn)為位似中心,相似比為k,那么位似圖形對(duì)應(yīng)點(diǎn)的坐標(biāo)的比等于__________.,相似圖形,相交于一點(diǎn),平行,位似中心,k或-k,重要方法與思路 判定三角形相似的幾種思路方法: (1)平行線法:平行于三角形的一邊的直線與其他兩邊相交,所構(gòu)成的三角形與原三角形相似. 這是判定三角形相似的一種基本方法,當(dāng)已知條件中有平行線時(shí)可考慮采用此方法.這里,相似的基本圖形可分別記為“A”型(如圖2-6-30-1)和“X”型(如圖2-6-30-1),在應(yīng)用時(shí)要善于從復(fù)
5、雜的圖形中抽象出這些基本圖形.,(2)三邊法:三組對(duì)應(yīng)邊成比例的兩個(gè)三角形相似. 若已知條件中給出三組邊的數(shù)量關(guān)系時(shí),可考慮證明三邊成比例.,(3)兩邊及其夾角法:兩組對(duì)應(yīng)邊成比例且?jiàn)A角對(duì)應(yīng)相等的兩個(gè)三角形相似. 若已知條件中給出一對(duì)等角時(shí),可考慮找?jiàn)A邊成比例;反之,若已知夾邊成比例,可考慮找?jiàn)A角相等. (4)兩角法:有兩組角對(duì)應(yīng)相等的兩個(gè)三角形相似. 若已知條件中給出一對(duì)等角時(shí),可考慮再找另一對(duì)等角.,,中考考點(diǎn)精練,1. (2016蘭州)如圖2-6-30-2,在ABC中,DEBC, (),C,考點(diǎn)1比例的有關(guān)概念和性質(zhì),,2. (2016杭州)如圖2-6-30-3,已知直線abc,直線m交
6、直線a,b,c于點(diǎn)A,B,C,直線n交直線a,b,c于點(diǎn)D,E,F(xiàn),若(),B,,解題指導(dǎo): 本考點(diǎn)的題型一般為選擇題或填空題,難度較低. 解此類(lèi)題的關(guān)鍵在于熟練掌握比例、平行線分線段成比例等的概念及性質(zhì)(注意:相關(guān)要點(diǎn)請(qǐng)查看“知識(shí)要點(diǎn)梳理”部分,并認(rèn)真掌握).,考點(diǎn)2相似三角形的性質(zhì),1. (2015廣東)若兩個(gè)相似三角形的周長(zhǎng)比為23,則它們的面積比是________. 2. (2016廣州)如圖2-6-30-4,在平面直角坐標(biāo)系xOy中,直線y=-x+3與x軸交于點(diǎn)C,與直線AD交于點(diǎn) 點(diǎn)D的坐標(biāo)為(0,1). (1)求直線AD的解析式; (2)直線AD與x軸交于點(diǎn)B,若點(diǎn)E 是直線
7、AD上一動(dòng)點(diǎn)(不與點(diǎn)B重合), 當(dāng)BOD與BCE相似時(shí),求點(diǎn)E的坐標(biāo).,49,解:(1)設(shè)直線AD的解析式為y=kx+b,,(2)直線AD與x軸的交點(diǎn)為(-2,0),OB=2. 點(diǎn)D的坐標(biāo)為(0,1),OD=1. y=-x+3與x軸交于點(diǎn)C(3,0), OC=3. BC=5. BOD與BCE相似,,3. (2015茂名)如圖2-6-30-5,RtABC中,ACB=90,AC=6 cm,BC=8 cm.動(dòng)點(diǎn)M從點(diǎn)B出發(fā),在BA邊上以每秒3 cm的速度向定點(diǎn)A運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)N從點(diǎn)C出發(fā),在CB邊上以每秒 2 cm的速度向點(diǎn)B運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為 連接MN. (1)若BMN與ABC相似,求t的值;
8、 (2)如圖2-6-30-5,連接AN,CM,若ANCM,求t的值.,ANCM,ACB=90, CAN+ACM=90,MCD+ACM=90. CAN=MCD. MDCB, MDC=ACB=90. CANDCM.,解題指導(dǎo): 本考點(diǎn)的題型不固定,難度中等. 解此類(lèi)題的關(guān)鍵在于熟練掌握相似三角形的性質(zhì)(注意:相關(guān)要點(diǎn)請(qǐng)查看“知識(shí)要點(diǎn)梳理”部分,并認(rèn)真掌握).注意以下要點(diǎn): 兩個(gè)三角形相似,如果未指明哪一組邊是對(duì)應(yīng)邊,哪一對(duì)角是對(duì)應(yīng)角,則應(yīng)進(jìn)行分類(lèi)討論,將各種情況一一呈現(xiàn)出來(lái),不遺漏、不偏頗地進(jìn)行求解或證明.,考點(diǎn)3相似三角形的判定,1. (2016廣東)如圖2-6-30-6,O是ABC的外接圓,B
9、C是O的直徑,ABC=30,過(guò)點(diǎn)B作O的切線BD,與CA的延長(zhǎng)線交于點(diǎn)D,與半徑AO的延長(zhǎng)線交于點(diǎn)E,過(guò)點(diǎn)A作O的切線AF,與直徑BC的延長(zhǎng)線交于點(diǎn)F. 求證:ACFDAE.,證明:BC是O的直徑, BAC=90. ABC=30,ACB=60. OA=OC,AOC=60. AF是O的切線, OAF=90. AFC=30. DE是O的切線,DBC=90. D=AFC=30. 又DAE=ACF=180-60=120, ACFDAE.,2. (2016杭州)如圖2-6-30-7,在ABC中,點(diǎn)D,E分別在邊AB,AC上,AED=B,射線AG分別交線段DE,BC于點(diǎn)F,G,且 (1)求證:ADFACG
10、; (2),(1)證明:AED=B,DAE=DAE, ADF=C. ADFACG. (2)解:ADFACG,,解題指導(dǎo): 本考點(diǎn)的題型不固定,難度中等. 解此類(lèi)題的關(guān)鍵在于熟練掌握并運(yùn)用相似三角形的判定方法(注意:相關(guān)要點(diǎn)請(qǐng)查看“知識(shí)要點(diǎn)梳理”部分,并認(rèn)真掌握).注意以下要點(diǎn): 相似三角形的判定問(wèn)題常在三角形或圓的綜合題中出現(xiàn),無(wú)論怎樣出題,解題是關(guān)鍵是要根據(jù)已知條件提供的信息,靈活選擇判定三角形相似的方法與思路,正確地證出三角形相似.,考點(diǎn)4圖形的位似,1. (2016十堰)如圖2-6-30-8,以點(diǎn)O為位似中心,將ABC縮小后得到ABC,已知OB=3OB,則ABC與ABC的面積比為(
11、) A. 13B. 14 C. 15 D. 19,D,2. (2016威海)如圖2-6-30-9,直線 與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,BOC與BOC是以點(diǎn)A為位似中心的位似圖形,且相似比為13,則點(diǎn)B的對(duì)應(yīng)點(diǎn)B的坐標(biāo)為 ________________________.,(-8,-3)或(4,3),解題指導(dǎo): 本考點(diǎn)的題型一般為選擇題或填空題,難度較低. 解此類(lèi)題的關(guān)鍵在于掌握位似圖形的概念和性質(zhì),同時(shí)注意位似是相似的特殊形式. 熟記以下要點(diǎn): 如果兩個(gè)圖形不僅是相似圖形,而且對(duì)應(yīng)頂點(diǎn)的連線相交于一點(diǎn),對(duì)應(yīng)邊互相平行,那么這樣的兩個(gè)圖形叫做位似圖形,這個(gè)點(diǎn)叫做位似中心.,,考點(diǎn)鞏固訓(xùn)練
12、,考點(diǎn)1比例的有關(guān)概念和性質(zhì),1. 的值為(),D,2.如圖2-6-30-10,l1l2l3,兩條直線與這三條平行線分別交于點(diǎn)A,B,C和D,E,F(xiàn). 已知 則 的值為(),D,考點(diǎn)2相似三角形的性質(zhì),3. 如果兩個(gè)相似三角形對(duì)應(yīng)邊的比為23,那么這兩個(gè)相似三角形面積的比是() A. 23 B. 23 C. 49 D. 827 4. 兩個(gè)相似三角形對(duì)應(yīng)中線的比為23,周長(zhǎng)的和是20,則這兩個(gè)三角形的周長(zhǎng)分別為() A. 8和12B. 9和11 C. 7和13D. 6和14,C,A,5. 如圖2-6-30-11,矩形ABCD中,AB=3,BC=10,點(diǎn)P是AD上的一個(gè)動(dòng)點(diǎn),若以A,P,B
13、為頂點(diǎn)的三角形與PDC相似,則AP=_____________.,1或5或9,6. 如圖2-6-30-12,已知ABCADE,AB=30 cm,AD= 18 cm,BC=20 cm,BAC=75,ABC=40. (1)求ADE和AED的度數(shù); (2)求DE的長(zhǎng).,解:(1)BAC=75,ABC=40, C=180-BAC-ABC=180-75- 40=65. ABCADE, ADE=ABC=40,AED=C=65. (2)ABCADE, 解得DE=12(cm).,考點(diǎn)3相似三角形的判定,7. 如圖2-6-30-13,下列條件不能判定ADBABC的是() A. ABD=ACB B. ADB=A
14、BC C. AB2=ADAC D.,8. 如圖2-6-30-13,點(diǎn)P是ABCD的邊AB上的一點(diǎn),射線CP交DA的延長(zhǎng)線于點(diǎn)E,則圖中相似的三角形有() A. 0對(duì)B. 1對(duì) C. 2對(duì)D. 3對(duì),D,9. 如圖2-6-30-15,在平行四邊形ABCD中,過(guò)點(diǎn)A作AEBC,垂足為點(diǎn)E,連接DE,F(xiàn)為線段DE上一點(diǎn),且AFE=B. 求證:ADFDEC.,證明:四邊形ABCD是平行四邊形, ADBC,ABCD. ADF=CED,B+C=180. AFE+AFD=180,AFE=B, AFD=C. ADFDEC.,考點(diǎn)4圖形的位似,10. 如圖2-6-30-16,ABC和A1B1C1是以點(diǎn)O為位似中心的位似三角形,若C1為OC的中點(diǎn),AB=4,則A1B1的長(zhǎng)為() A. 1B. 2 C. 4D. 8 11. 如圖2-6-30-16,以O(shè)為位似中心將四邊形ABCD放大后得到四邊形ABCD,若OA=4,OA=8,則四邊形ABCD和四邊形ABCD的周長(zhǎng)的比為_(kāi)_______.,B,12,