【導(dǎo)與練】(新課標(biāo))2016屆高三數(shù)學(xué)一輪復(fù)習(xí) 第8篇 第7節(jié) 曲線與方程課時訓(xùn)練 理

上傳人:仙*** 文檔編號:156568350 上傳時間:2022-09-27 格式:DOC 頁數(shù):12 大?。?.96MB
收藏 版權(quán)申訴 舉報 下載
【導(dǎo)與練】(新課標(biāo))2016屆高三數(shù)學(xué)一輪復(fù)習(xí) 第8篇 第7節(jié) 曲線與方程課時訓(xùn)練 理_第1頁
第1頁 / 共12頁
【導(dǎo)與練】(新課標(biāo))2016屆高三數(shù)學(xué)一輪復(fù)習(xí) 第8篇 第7節(jié) 曲線與方程課時訓(xùn)練 理_第2頁
第2頁 / 共12頁
【導(dǎo)與練】(新課標(biāo))2016屆高三數(shù)學(xué)一輪復(fù)習(xí) 第8篇 第7節(jié) 曲線與方程課時訓(xùn)練 理_第3頁
第3頁 / 共12頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《【導(dǎo)與練】(新課標(biāo))2016屆高三數(shù)學(xué)一輪復(fù)習(xí) 第8篇 第7節(jié) 曲線與方程課時訓(xùn)練 理》由會員分享,可在線閱讀,更多相關(guān)《【導(dǎo)與練】(新課標(biāo))2016屆高三數(shù)學(xué)一輪復(fù)習(xí) 第8篇 第7節(jié) 曲線與方程課時訓(xùn)練 理(12頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 【導(dǎo)與練】(新課標(biāo))2016屆高三數(shù)學(xué)一輪復(fù)習(xí) 第8篇 第7節(jié) 曲線與方程課時訓(xùn)練 理                         【選題明細(xì)表】 知識點、方法 題號 曲線與方程 1 直接法求軌跡(方程) 4、9、12、13 定義法求軌跡(方程) 2、5、6、11、15、16、17 相關(guān)點法求軌跡(方程) 7、10、14 參數(shù)法求軌跡(方程) 3、8 基礎(chǔ)過關(guān) 一、選擇題 1.方程(x2+y2-4)=0的曲線形狀是( C ) 解析:原方程可化為或x+y+1=0. 顯然方程表示直線x+y+1=0和圓x2+y2-4=0在直線x+y+1=0的

2、右上方部分,故選C. 2. △ABC的頂點A(-5,0),B(5,0),△ABC的內(nèi)切圓圓心在直線x=3上,則頂點C的軌跡方程是( C ) (A)-=1 (B)-=1 (C)-=1(x>3) (D)-=1(x>4) 解析:如圖,|AD|=|AE|=8,|BF|=|BE|=2,|CD|=|CF|, 所以|CA|-|CB|=8-2=6. 根據(jù)雙曲線定義,所求軌跡是以A、B為焦點,實軸長為6的雙曲線的右支, 方程為-=1 (x>3). 3.平面直角坐標(biāo)系中,已知兩點A(3,1),B(-1,3),若點C滿足= λ1+λ2(O為坐標(biāo)原點),其中λ1,λ2∈R,且λ1+λ2=1,則點

3、C的軌跡是( A ) (A)直線 (B)橢圓 (C)圓 (D)雙曲線 解析:設(shè)C(x,y),則=(x,y),=(3,1),=(-1,3), ∵=λ1+λ2, ∴又λ1+λ2=1, ∴x+2y-5=0,表示一條直線. 4.動點P為橢圓+=1 (a>b>0)上異于橢圓頂點(±a,0)的一點,F1、F2為橢圓的兩個焦點,動圓C與線段F1P、F1F2的延長線及線段PF2相切,則圓心C的軌跡為( D ) (A)橢圓 (B)雙曲線 (C)拋物線 (D)直線 解析:如圖所示,設(shè)三個切點分別為M、N、Q. ∴|PF1|+|PF2|=|PF1|+|PM|+|F2N|=|F1N|+|

4、F2N|=|F1F2|+2|F2N|=2a, ∴|F2N|=a-c, ∴N點是橢圓的右頂點, ∴CN⊥x軸, ∴圓心C的軌跡為直線. 5.已知點M(-3,0),N(3,0),B(1,0),動圓C與直線MN切于點B,過M、N與圓C相切的兩直線相交于點P,則P點的軌跡方程為( A ) (A)x2-=1 (x>1) (B)x2-=1 (x<-1) (C)x2+=1 (x>0) (D)x2-=1 (x>1) 解析:設(shè)另兩個切點為E、F, 如圖所示,則|PE|=|PF|, |ME|=|MB|, |NF|=|NB|. 從而|PM|-|PN|=|ME|-|NF|=|MB|-|N

5、B|=4-2=2<|MN|, 所以P的軌跡是以M、N為焦點,實軸長為2的雙曲線的右支.a=1,c=3, ∴b2=8. 故方程為x2-=1 (x>1).故選A. 6.點P是以F1、F2為焦點的橢圓上一點,過焦點F2作∠F1PF2外角平分線的垂線,垂足為M,則點M的軌跡是( A ) (A)圓 (B)橢圓 (C)雙曲線 (D)拋物線 解析:如圖,延長F2M交F1P延長線于N. ∵|PF2|=|PN|, ∴|F1N|=2a. 連接OM,則在△NF1F2中,OM為中位線, 則|OM|=|F1N|=a. ∴點M的軌跡是圓. 7.(2014瑞安十校模擬)點P(4,-2)

6、與圓x2+y2=4上任一點連線的中點的軌跡方程是( A ) (A)(x-2)2+(y+1)2=1 (B)(x-2)2+(y+1)2=4 (C)(x+4)2+(y-2)2=4 (D)(x+2)2+(y-1)2=1 解析:設(shè)圓上任一點為Q(x0,y0),PQ的中點為M(x,y), 則 解得 又(2x-4)2+(2y+2)2=4,即(x-2)2+(y+1)2=1. 8.(2014東營模擬)已知正方形的四個頂點分別為O(0,0),A(1,0),B(1,1),C(0,1),點D,E分別在線段OC,AB上運動,且OD=BE,設(shè)AD與OE交于點G,則點G的軌跡方程是( A ) (A)y=x

7、(1-x)(0≤x≤1) (B)x=y(1-y)(0≤y≤1) (C)y=x2(0≤x≤1) (D)y=1-x2(0≤x≤1) 解析:設(shè)D(0,λ),E(1,1-λ)(0≤λ≤1), 所以線段AD方程為x+=1(0≤x≤1),線段OE方程為y=(1-λ)x(0≤x≤1) , 聯(lián)立方程組(λ為參數(shù)),消去參數(shù)λ得點G的軌跡方程為y=x(1-x)(0≤x≤1). 二、填空題 9.已知M(-2,0),N(2,0),則以MN為斜邊的直角三角形的直角頂點P的軌跡方程是        .? 解析:設(shè)P(x,y), ∵△MPN為直角三角形, ∴|MP|2+|NP|2=|MN|2, ∴

8、(x+2)2+y2+(x-2)2+y2=16, 整理得,x2+y2=4. ∵M(jìn),N,P不共線, ∴x≠±2, ∴軌跡方程為x2+y2=4 (x≠±2). 答案:x2+y2=4 (x≠±2) 10.P是橢圓+=1(a>b>0)上的任意一點,F1、F2是它的兩個焦點,O為坐標(biāo)原點,=+,則動點Q的軌跡方程是    .? 解析:=+, 如圖,+==2=-2, 設(shè)Q(x,y), 則=-=-(x,y)=(-,-), 即P點坐標(biāo)為(-,-), 又P在橢圓上, 則有+=1, 即+=1. 答案:+=1 11.設(shè)x,y∈R,i、j為直角坐標(biāo)平面內(nèi)x,y軸正方向上的單位向量,向

9、量a=xi+(y+2)j,b=xi+(y-2)j,且|a|+|b|=8,則點M(x,y)的軌跡方程為        .? 解析:由已知得a=(x,y+2),b=(x,y-2),而|a|+|b|=8,故有+=8①,由①式知動點M(x,y)到兩定點F1(0,-2),F2(0,2)的距離之和為一常數(shù),滿足橢圓的定義,故M點軌跡為以F1、F2為焦點的橢圓,橢圓的長半軸長a=4,所以短半軸長b=2,故其軌跡方程為+=1. 答案:+=1 三、解答題 12.(2015長春高三調(diào)研)已知平面上的動點P(x,y)及兩個定點A(-2,0),B(2,0),直線PA,PB的斜率分別為k1,k2且k1k2=-.

10、 (1)求動點P的軌跡C方程; (2)設(shè)直線l:y=kx+m與曲線 C交于不同兩點M,N,當(dāng)OM⊥ON時,求O點到直線l的距離(O為坐標(biāo)原點). 解:(1)設(shè)P(x,y), 由已知得·=-, 整理得x2+4y2=4, 即+y2=1(x≠±2). (2)設(shè)M(x1,y1),N(x2,y2) 消去y得(4k2+1)x2+8kmx+4m2-4=0, 由Δ=(8km)2-4(4k2+1)(4m2-4)>0, 得4k2+1-m2>0. x1+x2=-, x1·x2=, ∵OM⊥ON, ∴x1·x2+y1·y2=0, 即x1·x2+(kx1+m)(kx2+m)=(1+k2

11、)x1·x2+km(x1+x2)+m2=0, ∴(1+k2)·+km·(-)+m2=0, ∴m2=(k2+1)滿足4k2+1-m2>0, ∴O點到l的距離為d=, 即d2==, ∴d=. 13.(2013高考陜西卷)已知動圓過定點A(4,0),且在y軸上截得弦MN的長為8. (1)求動圓圓心的軌跡C的方程; (2)已知點B(-1,0),設(shè)不垂直于x軸的直線l與軌跡C交于不同的兩點P,Q,若x軸是∠PBQ的角平分線,證明直線l過定點. (1)解:如圖所示,設(shè)動圓圓心O1(x,y), 由題意,|O1A|=|O1M|, 當(dāng)O1不在y軸上時, 過O1作O1H⊥MN交MN于H

12、, 則H是MN的中點, ∴|O1M|=, 又|O1A|=, ∴=, 化簡得y2=8x(x≠0). 又當(dāng)O1在y軸上時,O1與O重合,點O1的坐標(biāo)(0,0)也滿足方程y2=8x, ∴動圓圓心的軌跡C的方程為y2=8x. (2)證明:由題意,設(shè)直線l的方程為y=kx+b(k≠0), P(x1,y1),Q(x2,y2), 將y=kx+b代入y2=8x中,得k2x2+(2bk-8)x+b2=0, 其中Δ=-32kb+64>0. 由根與系數(shù)的關(guān)系得,x1+x2=,① x1x2=,② 因為x軸是∠PBQ的角平分線, 所以=-, 即y1(x2+1)+y2(x1+1)=0,

13、 (kx1+b)(x2+1)+(kx2+b)(x1+1)=0, 2kx1x2+(b+k)(x1+x2)+2b=0,③ 將①②代入③,得2kb2+(k+b)(8-2bk)+2k2b=0, ∴k=-b,此時Δ>0, ∴直線l的方程為y=k(x-1), ∴直線l過定點(1,0). 能力提升 14.在平行四邊形ABCD中,∠BAD=60°,AD=2AB,若P是平面ABCD內(nèi)一點,且滿足:x+y+=0(x,y∈R).則當(dāng)點P在以A為圓心,||為半徑的圓上時,實數(shù)x,y應(yīng)滿足關(guān)系式為( D ) (A)4x2+y2+2xy=1 (B)4x2+y2-2xy=1 (C)x2+4y2-2xy=

14、1 (D)x2+4y2+2xy=1 解析:如圖所示,以A為原點建立平面直角坐標(biāo)系,設(shè)AD=2. 據(jù)題意,AB=1,∠ABD=90°, BD=. ∴B、D的坐標(biāo)分別為(1,0)、(1,), ∴=(1,0),=(1,). 設(shè)點P的坐標(biāo)為(m,n), 即=(m,n), 則由x+y+=0, 得:=x+y, ∴ 據(jù)題意,m2+n2=1, ∴x2+4y2+2xy=1. 15.有一動圓P恒過定點F(a,0)(a>0)且與y軸相交于點A、B,若△ABP為正三角形,則點P的軌跡方程為    .? 解析:設(shè)P(x,y),動圓P的半徑為R, 由于△ABP為正三角形, ∴P到y(tǒng)軸的

15、距離d=R, 即|x|=R. 而R=|PF|=, ∴|x|=·. 整理得(x+3a)2-3y2=12a2, 即-=1. 答案:-=1 16.(2014高考廣東卷)已知橢圓C:+=1(a>b>0)的一個焦點為(,0),離心率為. (1)求橢圓C的標(biāo)準(zhǔn)方程; (2)若動點P(x0,y0)為橢圓C外一點,且點P到橢圓C的兩條切線相互垂直,求點P的軌跡方程. 解:(1)依題意得,c=,e==, 因此a=3,b2=a2-c2=4, 故橢圓C的標(biāo)準(zhǔn)方程是+=1. (2)若兩切線的斜率均存在,設(shè)過點P(x0,y0)的切線方程是y=k(x-x0)+y0, 則由 得+=1, 即(

16、9k2+4)x2+18k(y0-kx0)x+9[(y0-kx0)2-4]=0, 因為直線與橢圓C相切, 所以Δ=[18k(y0-kx0)]2-36(9k2+4)[(y0-kx0)2-4]=0, 整理得(-9)k2-2x0y0k+-4=0. 又所引的兩條切線相互垂直,設(shè)兩切線的斜率分別為k1,k2, 于是有k1k2=-1, 即=-1, 即+=13(x0≠±3). 若兩切線中有一條斜率不存在,則易得或或或經(jīng)檢驗知均滿足+=13. 因此,動點P(x0,y0)的軌跡方程是x2+y2=13. 探究創(chuàng)新 17.(2014河南鄭州一模)如圖,△PAB所在的平面α和四邊形ABCD所在的平面β互相垂直,且AD⊥α,BC⊥α,AD=4,BC=8,AB=6,若 tan∠ADP+2tan∠BCP=10,則點P在平面α內(nèi)的軌跡是( B ) (A)圓的一部分 (B)橢圓的一部分 (C)雙曲線的一部分 (D)拋物線的一部分 解析:由題意可知+2=10, 則PA+PB=40>AB=6, 又因P、A、B三點不共線, 故點P的軌跡是以A、B為焦點的橢圓的一部分. 12

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!