2013年高考數(shù)學(xué) 易錯點點睛與高考突破 專題15 導(dǎo)數(shù)及其應(yīng)用

上傳人:huo****ian 文檔編號:147521534 上傳時間:2022-09-02 格式:DOC 頁數(shù):34 大?。?.62MB
收藏 版權(quán)申訴 舉報 下載
2013年高考數(shù)學(xué) 易錯點點睛與高考突破 專題15 導(dǎo)數(shù)及其應(yīng)用_第1頁
第1頁 / 共34頁
2013年高考數(shù)學(xué) 易錯點點睛與高考突破 專題15 導(dǎo)數(shù)及其應(yīng)用_第2頁
第2頁 / 共34頁
2013年高考數(shù)學(xué) 易錯點點睛與高考突破 專題15 導(dǎo)數(shù)及其應(yīng)用_第3頁
第3頁 / 共34頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2013年高考數(shù)學(xué) 易錯點點睛與高考突破 專題15 導(dǎo)數(shù)及其應(yīng)用》由會員分享,可在線閱讀,更多相關(guān)《2013年高考數(shù)學(xué) 易錯點點睛與高考突破 專題15 導(dǎo)數(shù)及其應(yīng)用(34頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2013年高考數(shù)學(xué) 易錯點點睛與高考突破 專題15 導(dǎo)數(shù)及其應(yīng)用【難點突破】 難點 1利用導(dǎo)數(shù)的幾何意義 1.已知拋物線y=-x2+2,過其上一點P引拋物線的切線l,使l與兩坐標(biāo)軸在第一象限圍成的面積最小,求l的方程。 把x0=代入①得l的方程為: 2x+3y-8=0. 2.由原點O向三次曲線y=x3-3ax2(a≠0)引切線,切于點P1(x1,y1)(O,P1兩點不重合),再由P1引此曲線的切線,切于點P2(x2,y2) (P1,P2不重合)。如此繼續(xù)下去,得到點列{Pn(xn,yn)} 求x1; 求xn與xn+1滿足的關(guān)系式; 若a>0,試判斷xn與a的大小關(guān)系并說明理由

2、 (3)由(2)得xn+1=- 難點 2利用導(dǎo)數(shù)探討函數(shù)的單調(diào)性 1.已知m∈R,研究函數(shù)f(x)=的單調(diào)區(qū)間 ∴f(x)在(-1,-)上是減函數(shù)。 ②當(dāng)0

3、b?若存在,求出點M的坐標(biāo);若不存在,說明理由。 4.已知函數(shù)f(x)=+(b-1)x2+cx(b,c為常數(shù)) (1)若f(x)在x∈(-∞,x1)及x∈(x2+∞)上單調(diào)遞增,且在x∈(x1,x2)上單調(diào)遞減,又滿足0x1,試比較t2+bt+c與x1的大小,并加以證明。 難點 3利用導(dǎo)數(shù)求函數(shù)的極值和最值 1.已知函數(shù)f(x)=ax3+cx+d(a≠0)是R上奇函數(shù),當(dāng)x=-1時,f(x)取得極值2。 (1)求f(x)的單調(diào)區(qū)間; (2)若對于x1、x2∈[-1,1],不等式|f(x1)-f(x2)

4、|≤m,求m的最小值。 2.設(shè)函數(shù)f(x)是定義在[-1,0] ∪[0,1]上奇函數(shù),當(dāng)x∈[-1,0]時,f(x)=2ax+(a為實數(shù)) (1)當(dāng)x∈(0,1)時,求f(x)的解析式; (2)若a>-1,試判斷f(x)在[0,1]上的單調(diào)性; (3)是否存在a,使得當(dāng)x∈(0,1)時,f(x)有最大值-6。 ∵4x+2+1>0,∴x=. 又∵x∈(0, )時,h’(x)<0, x∈(,1)時,h’(x)>0. ∴x=時,h(x)有最小值h()=- ∴a<. 【易錯點點睛】 易錯點 1導(dǎo)數(shù)的概念與運算 1.設(shè)f0(x)=sinx,f1(x)=f’0(x),f2(x)=f’

5、1(x),…,fn+1(x)=f’n(x),n∈N,則f2005(x) ( ) A.sinx B.-sinx C.cosx D.-cosx 2.已知函數(shù)f(x)在x=1處的導(dǎo)數(shù)為3,f(x)的解析式可能為 ( ) A.f(x)=(x-1)3+32(x-1) B.f(x)=2x+1 C.f()=2(x-1)2 D.f(x)-x+3 = = 【特別提醒】 1.理解導(dǎo)數(shù)的概念時應(yīng)注意導(dǎo)數(shù)定義的另一種形式:設(shè)函數(shù)f(x)在x=a處可導(dǎo),則 的運用。

6、2.復(fù)合函數(shù)的求導(dǎo),關(guān)鍵是搞清復(fù)合關(guān)系,求導(dǎo)應(yīng)從外層到內(nèi)層進行,注意不要遺漏 3.求導(dǎo)數(shù)時,先化簡再求導(dǎo)是運算的基本方法,一般地,分式函數(shù)求導(dǎo),先看是否化為整式函數(shù)或較簡單的分式函數(shù);對數(shù)函數(shù)求導(dǎo)先化為和或差形式;多項式的積的求導(dǎo),先展開再求導(dǎo)等等。 【變式訓(xùn)練】 1 函數(shù)f(x)=x3+ax2+3x-9.已在f(x)在x=-3時取得極值,則a= ( ) A.2 B.3 C.4 D.5 5已知函數(shù)f(x)=ln(x-2)- (1)求導(dǎo)數(shù)f’(x) 答案: f′(x)= 易錯點 2導(dǎo)數(shù)幾何意義的運用 1.曲線y=x3在點(1,1)的切線與x軸、直

7、線x=2所圍成的三角形面積為_________. ∴三條直線所圍成的面積為S=×4×(2-)=。 2.設(shè)t≠0,點P(t,0)是函數(shù)f(x)=x3+ax與g(x)=bx3+c的圖像的一個公共點,兩函數(shù)的圖像在P點處有相同的切線。 (1)用t表示a、b、c; (2)若函數(shù)y=f(x)-g(x)在(-1,3)上單調(diào)遞減,求t的取值范圍。 【錯誤解答】 (1)∵函數(shù)f(x)=x3+ax與g(x)=bx2+c的圖像的一個公共點P(t,0).∴∴ 解得 t≤-9或t≥3. 3.已知函數(shù)f(x)=ax3+bx2-3x在x=±1處有極值。 (1)討論f(1)和f(-1)是函數(shù)的極大值還是極小

8、值。 (2)過點A(0,16)作曲線y=f(x)的切線,求此切線方程。 【特別提醒】 設(shè)函數(shù)y=f(x),在點(x0,y0)處的導(dǎo)數(shù)為f’(x0),則過此點的切線的斜率為f’(x0),在此點處的切線方程為y-y0=f’(x0)(x-x0).利用導(dǎo)數(shù)的這個幾何意義可將解析幾何的問題轉(zhuǎn)化為代數(shù)問題求解。 【變式訓(xùn)練】 1 曲線y=2x-x3在點(1,1)處的切線方程為_________. (2)設(shè)函數(shù)f(x)的圖像C1與函數(shù)g(x)圖像C2交于點P、Q,過線段PQ的中點作x軸的垂線分別交C1、C2于點M、N,證明C1在點M處的切線與C2在點N處的切線不平行。 4 已知函數(shù)f

9、(x)=|1-|,(x>0) (1)證明:01; 易錯點 3導(dǎo)數(shù)的應(yīng)用 1.已知函數(shù)f(x)=-x3+3x2+9x+a. (1)求f(x)的單調(diào)遞減區(qū)間; (2)若f(x)在區(qū)間[-2,2]上最大值為20,求它在該區(qū)間上的最小值。 【錯解分析】在閉區(qū)間上求函數(shù)的最大值和最小值,應(yīng)把極值點的函數(shù)值與兩端點的函數(shù)值進行比較大小才能產(chǎn)生最大(?。┲迭c,而上面解答題直接用極大(?。┲堤娲畲螅ㄐ。?.已知函數(shù)f(x)=ax3+3x2-x+1在R上是減函數(shù),求a的取值范圍。 4.設(shè)函數(shù)f(x)=x-ln(x+m)其中常數(shù)m為整數(shù)。 (1)當(dāng)m為何值

10、時,f(x)≥0; (2)定理:若g(x)在[a、b]上連續(xù),且g(a)與g(b)異號,則至少存在一點x0∈(a、b),使g(x0)=0.試用上述定理證明:當(dāng)整數(shù)m>1時,方程f(x)=0,在[e-m-m,e2m-m]內(nèi)有兩個實根。 【錯誤解答】 令f(x)≥0,x≥ln(x+m). 5.用長為90cm,寬為48cm的長方形鐵皮做一個無蓋的容器,先在四角分別截去一個小正形,然后把四邊翻轉(zhuǎn)90°角,再焊接而成(如圖,)問該容器高為多少時,容器的容積最大?最大容積是多少? 【特別提醒】 1.證函數(shù)f(x)在(a,b)上單調(diào),可以用函數(shù)的單調(diào)性定義,也可用導(dǎo)數(shù)來證明,前者較繁,后者較易,要

11、注意若f(x)在(a、b)內(nèi)個別點上滿足f’(x)=0(或不存在但連續(xù))其余點滿足f(x)>0(或f(x)<0)函數(shù)f(x)仍然在(a、b)內(nèi)單調(diào)遞增(或遞減),即導(dǎo)數(shù)為零的點不一定是增、減區(qū)間的分界點。 2.函數(shù)的極值是在局部對函數(shù)值的比較,函數(shù)在區(qū)間上的極大值(或極小值)可能有若干個,而且有時極小值大于它的極大值,另外,f’(x)=0是可導(dǎo)數(shù)f(x)在x=x0處取極值的必要而不充分條件,對于連續(xù)函數(shù)(不一定處處可導(dǎo))時可以是不必要條件。 3.函數(shù)的最大值、最小值,表示函數(shù)f(x)在整個區(qū)間的情況,即是在整體區(qū)間上對函數(shù)值的比較,連續(xù)函數(shù)f(x)在閉區(qū)間[a、b]上必有一個最大值和一最小

12、值,最多各有一個,但f(x)在(a、b)上就不一定有最大值(或最小值)。 4.實際應(yīng)用問題利用導(dǎo)數(shù)求f(x)在(a、b)的最大值時,f’(x)=0在(a,b)的解只有一個,由題意最值確實存在,就是f’(x)=0的解是最值點。 【變式訓(xùn)練】 1 已知m∈R,設(shè)P:x1和x2是方程x2-ax-2=0的兩個實根,不等式|m2-5m-3|≥|x1-x2|對任意實數(shù)a∈[-1,1]恒成立。 Q:函數(shù)f(x)=x3+(m+)x+6在(-∞,+ ∞)上有極值。 求使P正確且Q正確的m的取值范圍。 因此,函數(shù)f'(x)在x①=x1處取得極大值,在x=x2處取得極小值. 綜上所述,當(dāng)且僅當(dāng)

13、A>0時,函數(shù)f(x)在(-∞,+∞)上有極值. 5 某企業(yè)有一條價值a萬元的流水生產(chǎn)線,要提高該流水生產(chǎn)線的生產(chǎn)能力,提高產(chǎn)品的增加值,就要對充水生產(chǎn)線進行技術(shù)改造,假設(shè)增加值y萬元與技改把風(fēng)入x萬元之間的關(guān)系滿足①y與(a-x)x2成正比例; ②當(dāng)x=時,y=;③0≤≤t,其中t為常數(shù)且t∈[0,2]. (1)設(shè)y=f(x),求出f(x)的表達式,并求其定義域; 答案: f(x)=8a2x2—12x3=(0≤x≤,≤t≤2). (2)求出增加值y的最大值,并求出此時的技改投入x值。 解析:y′=sinx+cosx-sinx=xcosx,x∈(-π,-)時,y′>0. 3

14、已知函數(shù)f(x)=在(1,+∞)上為減函數(shù),則a的取值范圍為 ( ) A.01ln恒成立, ∵x> 4 函數(shù)y=2x3-3x2-12x+5在[0,3]上的最大值、最小值分別是 ( ) 6 函數(shù)f(x)=x3-2x+3的圖像在x=1處的切線與圓x2+y2=8的位置關(guān)系是 ( ) A.相切 B.相交且過圓心 C.相交但不過圓心 D.相離 7.設(shè)集合A=[0,1),B=[1

15、,2],函數(shù)f(x)=若x0∈A,且f[f(x0)]∈A,則x0的取值范圍是(  ) A. B.(log32,1) C. D. 8. 函數(shù)f(x)=lg(x≠0,x∈R),有下列命題: ①f(x)的圖象關(guān)于y軸對稱; ②f(x)的最小值是2; ③f(x)在(-∞,0)上是減函數(shù),在(0,+∞)上是增函數(shù); ④f(x)沒有最大值. 其中正確命題的序號是________.(請?zhí)钌纤姓_命題的序號) 方法二:①當(dāng)n=0時,f(x)=-1,x∈[0,1),則log2x=-1?x=∈[0,1); 10.已知定義域為R的函數(shù)f(x)=是奇函數(shù). (1)

16、求a,b的值; 11.已知函數(shù)f′(x),g′(x)分別是二次函數(shù)f(x)和三次函數(shù)g(x)的導(dǎo)函數(shù),它們在同一坐標(biāo)系下的圖象如圖所示,設(shè)函數(shù)h(x)=f(x)-g(x),則(  ) A.h(1)

17、)=e-x-ex切線斜率的最大值是2 C.已知函數(shù)f(a)=sinxdx,則f=1+cos1 D.函數(shù)y=3·2x+1的圖象可以由函數(shù)y=2x的圖象僅通過平移變換得到 13.設(shè)函數(shù)y=f(x)是定義在R上以1為周期的函數(shù),若g(x)=f(x)-2x在區(qū)間[2,3]上的值域為[-2,6],則函數(shù)g(x)在[-12,12]上的值域為(  ) A.[-2,6] B.[-20,34] C.[-22,32] D.[-24,28] 14.由直線x=-,x=,y=0與曲線y=cosx所圍成的封閉圖形的面積為(  ) A. B. C. D.1 答案

18、:C  解析:直線x=-,x=,y=0與曲線y=cosx所圍成的封閉圖形的面積為 cosxdx=. 15.已知函數(shù)f(x)=ax3+bx2+cx,其導(dǎo)函數(shù)y=f′(x)的圖象經(jīng)過點(1,0),(2,0),如圖所示,則下列說法中不正確的是________. ①當(dāng)x=時,函數(shù)f(x)取得極小值;②f(x)有兩個極值點;③當(dāng)x=2時,函數(shù)f(x)取得極小值;④當(dāng)x=1時,函數(shù)f(x)取得極大值. 16. 函數(shù)f(x)=xlnx,則f(x)的單調(diào)遞減區(qū)間是_______. 答案:(0,) 解析:令f′(x)=lnx+1<0,得x∈(0, ). 17.曲線y=2-x2與y=x3-2

19、在交點處的切線夾角是__________. 答案: 解析:聯(lián)立 又∵()′=-x,( )′=. ∴兩函數(shù)在x=2處導(dǎo)數(shù)分別為-2、3. ∴k1=-2,k2=3.tanθ=||= 可求得θ=. 18. 已知函數(shù)f(x)=mx3+mx2+3x在R上的增函數(shù),求實數(shù)m的取值范圍。 19.求函數(shù)f(x)=在[,3]上的最大值和最小值。 ∴f(3)= f()=-ln2-ln=-ln2-(ln3-ln2) (2)當(dāng)a取最大值時,存在t∈R,使x∈[1,m](m>1)時,f’(t-x) ≤恒成立,試求m的最大值。 21.已知函數(shù)f(x)=-x3-bx2-5cx-2d在[-∞,0]上

20、單調(diào)遞減,在[0,6]上單調(diào)遞增,且方程f(x)=0有3個實根:m、n、1。 (1)求f(4)的取值范圍。 ∵AB=9,AC=3,BC=由A到C所需要時間為t, 23. 函數(shù)y=f(x)在區(qū)間(0,+∞)內(nèi)可導(dǎo),導(dǎo)函數(shù)f(x)是減函數(shù),且f’(x)>0,設(shè)x0∈(0,+∞),y=kx+m是y=f(x)在點[x0,f(x0)]得的切線方程,并設(shè)函數(shù)g(x)=kx+m; (1)用x0、f(x0)、f’(x0)表示m; (3)若關(guān)于x的不等式a2+1≥ax+b≥在[0,+∞]上恒成立,其中a、b為實數(shù),求x的取值范圍及a與b所滿足的關(guān)系。 答案:0≤b≤01 a>0是不等式成立的必要條件肥下討論設(shè)此條件成立. X2+1≥ax+b,即x2-ax+1(1-b)。 令(x)=ax+b-,于是ax+b≥對任意x∈[0,+∞]成立的充要條件是(x)≥0,

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!