2014屆高考數(shù)學(xué)一輪復(fù)習(xí)方案 第14講 導(dǎo)數(shù)的應(yīng)用(一)課時作業(yè) 新人教B版
《2014屆高考數(shù)學(xué)一輪復(fù)習(xí)方案 第14講 導(dǎo)數(shù)的應(yīng)用(一)課時作業(yè) 新人教B版》由會員分享,可在線閱讀,更多相關(guān)《2014屆高考數(shù)學(xué)一輪復(fù)習(xí)方案 第14講 導(dǎo)數(shù)的應(yīng)用(一)課時作業(yè) 新人教B版(13頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、課時作業(yè)(十四)A [第14講 導(dǎo)數(shù)的應(yīng)用(一)] (時間:45分鐘 分值:100分) 1.函數(shù)f(x)=x+elnx的單調(diào)遞增區(qū)間為( ) A.(0,+∞) B.(-∞,0) C.(-∞,0)和(0,+∞) D.R 2.[2012·濟(jì)寧質(zhì)檢] 函數(shù)f(x)=ax3+x+1有極值的充要條件是( ) A.a(chǎn)≥0 B. a>0 C.a(chǎn)≤0 D.a(chǎn)<0 3.設(shè)a∈R,若函數(shù)y=ex+ax,x∈R有大于零的極值點(diǎn),則( ) A.a(chǎn)<-1 B.a(chǎn)>-1 C.a(chǎn)≥- D.a(chǎn)<- 4.函數(shù)f(x)=x3-3x2+1在x=________處取得極小值.
2、
5.函數(shù)f(x)=ex+e-x在(0,+∞)上( )
A.有極大值 B.有極小值
C.是增函數(shù) D.是減函數(shù)
6.[2012·合肥三檢]
圖K14-1
函數(shù)f(x)的圖象如圖K14-1所示,則不等式(x+3)f′(x)<0的解集為( )
A.(1,+∞)
B.(-∞,-3)
C.(-∞,-1)∪(1,+∞)
D.(-∞,-3)∪(-1,1)
7.[2012·西安模擬] 若函數(shù)f(x)=x3-12x在區(qū)間 (k-1,k+1)上不是單調(diào)函數(shù),則實(shí)數(shù)k的取值范圍是( )
A.k≤-3或-1≤k≤1或k≥3
B.-3 3、 4、(x)是R上的偶函數(shù),且在(0,+∞)上有f′(x)>0,若f(-1)=0,那么關(guān)于x的不等式xf(x)<0的解集是________________.
12.[2012·鹽城一模] 函數(shù)f(x)=(x2+x+1)ex(x∈R)的單調(diào)減區(qū)間為________.
13.已知函數(shù)f(x)=x3-bx2+c(b,c為常數(shù)),當(dāng)x=2時,函數(shù)f(x)取極值,則b=________;若函數(shù)f(x)存在三個不同零點(diǎn),則實(shí)數(shù)c的取值范圍是________.
14.(10分)已知函數(shù)f(x)=4x3+3tx2-6t2x+t-1,x∈R,其中t∈R.
(1)當(dāng)t=1時,求曲線y=f(x)在點(diǎn)(0,f(0) 5、)處的切線方程;
(2)當(dāng)t>0時,求f(x)的單調(diào)區(qū)間.
15.(13分)已知f(x)=ax3+bx2+cx(a≠0)在x=±1時取得極值,且f(1)=-1.
(1)試求常數(shù)a,b,c的值;
(2)試判斷x=±1是函數(shù)的極小值點(diǎn)還是極大值點(diǎn),并說明理由.
16.(12分)[2013·大連期中測試] 已知函數(shù)f(x)=ax-1-lnx(a∈R).
(1)討論函數(shù)f(x)在定義域內(nèi)的極值點(diǎn)的個數(shù);
(2)若函數(shù)f(x)在x=1處取得極值,且對?x∈(0,+∞),f(x)≥bx-2恒成立,求實(shí)數(shù)b的取值范圍;
(3)當(dāng)0< 6、x 7、0
3.函數(shù)f(x)=在區(qū)間(0,1)上( )
A.是減函數(shù) B.是增函數(shù)
C.有極小值 D.有極大值
4.已知曲線y=x2-1在x=x0處的切線與曲線y=1-x3在x=x0處的切線互相平行,則x0的值為________.
5.[2012·萊州一中二檢] 已知對任意實(shí)數(shù)x,有f(-x)=-f(x),g(-x)=g(x),且x>0時,f′(x)>0,g′(x)>0,則x<0時( )
A.f′(x)>0,g′(x)>0 B.f′(x)>0,g′(x)<0
C.f′(x)<0,g′(x)>0 D.f′(x)<0,g′(x)<0
6.若a>0,b>0,且函數(shù) 8、f(x)=4x3-ax2-2bx+2在x=1處有極值,則ab的最大值等于( )
A.2 B.3
C.6 D.9
7.[2012·遼寧卷] 函數(shù)y=x2-lnx的單調(diào)遞減區(qū)間為( )
A.(-1,1] B.(0,1]
C.[1,+∞) D.(0,+∞)
8.[2012·自貢三診] 設(shè)函數(shù)f(x)在定義域內(nèi)可導(dǎo),y=f(x)的圖象如圖K14-2所示,則其導(dǎo)函數(shù)y=f′(x)的圖象可能為( )
圖K14-2
圖K14-3
9.[2013·如皋中學(xué)階段練習(xí)] 已知曲線y=(a-3)x3+lnx存在垂直于y軸的切線,則a的取值范圍為( )
A.a(chǎn)<3 9、 B.a(chǎn)>3
C.a(chǎn)≤3 D.a(chǎn)≥3
10.函數(shù)f(x)=xlnx的單調(diào)遞增區(qū)間是________________________________________________________________________.
11.若函數(shù)f(x)=在x=1處取極值,則a=________.
12.直線y=a與函數(shù)f(x)=x3-3x的圖象有相異的三個公共點(diǎn),則a的取值范圍是________.
圖K14-4
13.如圖K14-4是y=f(x)的導(dǎo)函數(shù)的圖象,現(xiàn)有四種說法:
①f(x)在(-3,-1)上是增函數(shù);
②x=-1是f(x)的極小值點(diǎn);
③f(x)在(2,4) 10、上是減函數(shù),在(-1,2)上是增函數(shù);
④x=2是f(x)的極小值點(diǎn).
以上正確結(jié)論的序號為________.
14.(10分)[2012·海淀模擬] 函數(shù)f(x)=(a∈R).
(1)若f(x)在點(diǎn)(1,f(1))處的切線斜率為,求實(shí)數(shù)a的值;
(2)若f(x)在x=1處取得極值,求函數(shù)f(x)的單調(diào)區(qū)間.
15.(13分)已知a∈R,函數(shù)f(x)=(-x2+ax)ex(x∈R,e為自然對數(shù)的底數(shù)).
(1)當(dāng)a=2時,求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)是否存在實(shí)數(shù)a使函數(shù)f(x)在R上為單調(diào)遞減函數(shù)?若存在,求出a的取值范圍;若不 11、存在,請說明理由.
16.(12分)[2012·浙江卷] 已知a∈R,函數(shù)f(x)=4x3-2ax+a.
(1) 求f(x)的單調(diào)區(qū)間;
(2)證明:當(dāng)0≤x≤1時,f(x)+|2-a|>0.
課時作業(yè)(十四)A
【基礎(chǔ)熱身】
1.A [解析] 因?yàn)楹瘮?shù)f(x)的定義域?yàn)?0,+∞),且f′(x)=1+>0.故f(x)的遞增區(qū)間為(0,+∞).故選A.
2.D [解析] f′(x)=3ax2+1,若函數(shù)有極值,則方程3ax2+1=0必有實(shí)數(shù)根,顯然a≠0,所以x2=->0,解得a<0.故選D.
3.A [解析] y′= 12、ex+a,由條件知,有解,所以a=-ex<-1.故選A.
4.2 [解析] f′(x)=3x2-6x=3x(x-2).當(dāng)x<0時,f′(x)>0;當(dāng)0<x<2時,f′(x)<0;當(dāng)x>2時,f′(x)>0,故當(dāng)x=2時f(x)取得極小值.
【能力提升】
5.C [解析] 依題意知,當(dāng)x>0時,f′(x)=ex-e-x>e0-e0=0,因此f(x)在(0,+∞)上是增函數(shù).
6.D [解析] 由不等式(x+3)f′(x)<0得或觀察圖象可知,x<-3或-1 13、區(qū)間是(-∞,-2)和(2,+∞),由y′<0得函數(shù)的減區(qū)間是(-2,2).由于函數(shù)f(x)在(k-1,k+1)上不是單調(diào)函數(shù),所以有k-1<-2 14、3} [解析] 由題意知f′(-2)=0,f′(0)=0,而f′(x)=3x2-2px,則有12+4p=0,即p=-3.故填{-3}.
11.(-∞,-1)∪(0,1) [解析] 在(0,+∞)上有f′(x)>0,所以f(x)在(0,+∞)上單調(diào)遞增.又函數(shù)f(x)是R上的偶函數(shù),所以f(x)在(-∞,0)上單調(diào)遞減,又f(1)=f(-1)=0.當(dāng)x>0時,xf(x)<0,所以0<x<1;當(dāng)x<0,xf(x)<0,所以x<-1.
12.(-2,-1) [解析] 因f′(x)=(2x+1)ex+(x2+x+1)ex=(x2+3x+2)ex,令f′(x)<0,則x2+3x+2<0,解得-2 15、<-1.
13.1 0<c< [解析] 因?yàn)閒′(x)=x2-2bx,又x=2是f(x)的極值點(diǎn),
則f′(2)=22-2b×2=0,∴b=1.
且x∈(0,2)時,f′(x)<0,f(x)單調(diào)遞減,
x∈(-∞,0),(2,+∞)時,f′(x)>0,f(x)單調(diào)遞增,
若f(x)=0有3個不同實(shí)根,則解得0<c<.
14.解:(1)當(dāng)t=1時,f(x)=4x3+3x2-6x,f(0)=0,
f′(x)=12x2+6x-6,f′(0)=-6.
所以曲線y=f(x)在點(diǎn)(0, f(0))處的切線方程為y=-6x.
(2)f′(x)=12x2+6tx-6t2.
令f′(x)=0 16、,解得x=-t或x=.
因t>0,則-t<.當(dāng)x變化時,f′(x),f(x)的變化情況如下表:
x
(-∞,-t)
f′(x)
+
-
+
f(x)
所以,f(x)的單調(diào)遞增區(qū)間是(-∞,-t),;
f(x)的單調(diào)遞減區(qū)間是.
15.解:(1)f′(x)=3ax2+2bx+c,
因?yàn)閤=±1是函數(shù)f(x)的極值點(diǎn),且f(x)在定義域內(nèi)任意一點(diǎn)處可導(dǎo).
所以x=±1使方程f′(x)=0,即x=±1為3ax2+2bx+c=0的兩根,
由根與系數(shù)的關(guān)系得
又f(1)=-1,
所以a+b+c=-1,③
由①②③解得a=,b=0,c=-.
17、
(2)由(1)知f(x)=x3-x,
所以f′(x)=x2-=(x-1)(x+1),
當(dāng)x>1或x<-1時,f′(x)>0;
當(dāng)-1 18、x≥,
∴f(x)在上單調(diào)遞減,在上單調(diào)遞增,即f(x)在x=處有極小值.
∴當(dāng)a≤0時,f(x)在(0,+∞)上沒有極值點(diǎn),
當(dāng)a>0時,f(x)在(0,+∞)上有一個極值點(diǎn).
(2)∵函數(shù)f(x)在x=1處取得極值,∴a=1,
∴f(x)≥bx-2?1+-≥b.
令g(x)=1+-,可得g(x)在(0,e2]上遞減,在[e2,+∞)上遞增,
∴g(x)min=g(e2)=1-,即b≤1-.
(3)令h(x)=-=g(x)-1,
由(2)可知g(x)在(0,e2)上單調(diào)遞減,則h(x)在(0,e2)上單調(diào)遞減,
∴當(dāng)0 19、
當(dāng)0 20、)>0.所以在區(qū)間(0,1)上f(x)是減函數(shù),x=e時有極小值f(e)=e.故選A.
4.-或0 [解析] 依題意兩曲線在x=x0的導(dǎo)數(shù)相等,即2x0=-3x,解得x0=-或x0=0.
【能力提升】
5.B [解析] 由已知得f(x)是奇函數(shù),g(x)是偶函數(shù),且x>0時,f(x)與g(x)都是增函數(shù),根據(jù)奇函數(shù)和偶函數(shù)的對稱性可知,當(dāng)x<0時,f(x)是增函數(shù),g(x)是減函數(shù),所以f′(x)>0,g′(x)<0.故選B.
6.D [解析] f′(x)=12x2-2ax-2b,由函數(shù)f(x)在x=1處有極值,可知函數(shù)f(x)在x=1處的導(dǎo)數(shù)值為零,即12-2a-2b=0,所以a+b 21、=6.由題意知a,b都是正實(shí)數(shù),所以ab≤==9,當(dāng)且僅當(dāng)a=b=3時取到等號.
7.B [解析] ∵y′=′=x-==,又因?yàn)槎x域?yàn)?0,+∞),令y′<0,得到0 22、(x)的定義域?yàn)?0,+∞),因?yàn)閒′(x)=lnx+1,由f′(x)>0,得x>,所以f(x)的單調(diào)遞增區(qū)間為,+∞.
11.3 [解析] 因?yàn)閒(x)在x=1處取極值,所以f′(1)=0,又f′(x)=,
所以f′(1)==0,即2×1×(1+1)-(1+a)=0,故a=3.
12.(-2,2) [解析] 令f′(x)=3x2-3=0,得x=±1,可得極大值為f(-1)=2,極小值為f(1)=-2,所以當(dāng)-2<a<2時,直線y=a與f(x)恰有三個不同的公共點(diǎn).
13.②③ [解析] 當(dāng)x∈(-3,-1)時,f′(x)<0,即f(x)在(-3,-1)上是減函數(shù),故①錯誤;對于②,在 23、x=-1附近,當(dāng)x<-1時,f′(x)<0,當(dāng)x>-1時,f′(x)>0,故x=-1是f(x)的極小值點(diǎn),故②正確,同理可知④錯誤;當(dāng)x∈(2,4)時,f′(x)<0,f(x)是減函數(shù);當(dāng)x∈(-1,2)時,f′(x)>0,f(x)是增函數(shù),故③正確.
14.解:(1)f′(x)==,
若f(x)在點(diǎn)(1,f(1))處的切線斜率為,則f′(1)=.
所以,f′(1)==,得a=1.
(2)因?yàn)閒(x)在x=1處取得極值,所以f′(1)=0,
即1+2-a=0,a=3,所以f′(x)=.
因?yàn)閒(x)的定義域?yàn)閧x|x≠-1},所以有:
x
(-∞,-3)
-3
(-3,-1 24、)
(-1,1)
1
(1,+∞)
f′(x)
+
0
-
-
0
+
f(x)
遞增
極大值
遞減
遞減
極小值
遞增
所以,f(x)的單調(diào)遞增區(qū)間是(-∞,-3),(1,+∞),單調(diào)遞減區(qū)間是(-3,-1),(-1,1).
15.解:(1)當(dāng)a=2時,f(x)=(-x2+2x)ex,
所以f′(x)=(-2x+2)ex+(-x2+2x)ex=(-x2+2)ex.
令f′(x)>0,即(-x2+2)ex>0,
因?yàn)閑x>0,所以-x2+2>0,解得-<x<.
所以函數(shù)f(x)的單調(diào)遞增區(qū)間是(-,).
(2)若函數(shù)f(x)在R上單調(diào)遞減,則f′ 25、(x)≤0對x∈R都成立,
即[-x2+(a-2)x+a]ex≤0對x∈R都成立.
因?yàn)閑x>0,所以x2-(a-2)x-a≥0對x∈R都成立.
所以Δ=(a-2)2+4a≤0,即a2+4≤0,這是不可能的.
故不存在實(shí)數(shù)a使函數(shù)f(x)在R上單調(diào)遞減.
【難點(diǎn)突破】
16.解:(1)由題意得f′(x)=12x2-2a.
當(dāng)a≤0時,f′(x)≥0恒成立,此時f(x)的單調(diào)遞增區(qū)間為(-∞,+∞).
當(dāng)a>0 時,f′(x)=12,此時
函數(shù)f(x)的單調(diào)遞增區(qū)間為和,
單調(diào)遞減區(qū)間為.
(2)由于0≤x≤1,故
當(dāng)a≤2時,f(x)+|a-2|=4x3-2ax+2≥4x3-4x+2.
當(dāng)a>2時,f(x)+|a-2|=4x3+2a(1-x)-2≥4x3+4(1-x)-2=4x3-4x+2.
設(shè)g(x)=2x3-2x+1,0≤x≤1,則
g′(x)=6x2-2=6,
于是
x
0
1
g′(x)
-
0
+
g(x)
1
減
極小值
增
1
所以,g(x)min=g=1->0.
所以當(dāng)0≤x≤1時,2x3-2x+1>0.
故f(x)+|a-2|≥4x3-4x+2>0.
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 6.煤礦安全生產(chǎn)科普知識競賽題含答案
- 2.煤礦爆破工技能鑒定試題含答案
- 3.爆破工培訓(xùn)考試試題含答案
- 2.煤礦安全監(jiān)察人員模擬考試題庫試卷含答案
- 3.金屬非金屬礦山安全管理人員(地下礦山)安全生產(chǎn)模擬考試題庫試卷含答案
- 4.煤礦特種作業(yè)人員井下電鉗工模擬考試題庫試卷含答案
- 1 煤礦安全生產(chǎn)及管理知識測試題庫及答案
- 2 各種煤礦安全考試試題含答案
- 1 煤礦安全檢查考試題
- 1 井下放炮員練習(xí)題含答案
- 2煤礦安全監(jiān)測工種技術(shù)比武題庫含解析
- 1 礦山應(yīng)急救援安全知識競賽試題
- 1 礦井泵工考試練習(xí)題含答案
- 2煤礦爆破工考試復(fù)習(xí)題含答案
- 1 各種煤礦安全考試試題含答案