《江蘇省揚(yáng)州市邗江區(qū)黃玨中學(xué)2012-2013學(xué)年八年級(jí)數(shù)學(xué) 暑假作業(yè)(11) 新人教版》由會(huì)員分享,可在線閱讀,更多相關(guān)《江蘇省揚(yáng)州市邗江區(qū)黃玨中學(xué)2012-2013學(xué)年八年級(jí)數(shù)學(xué) 暑假作業(yè)(11) 新人教版(7頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、暑假作業(yè)(11)
12.填在下面三個(gè)田字格內(nèi)的數(shù)有相同的規(guī)律,根據(jù)此規(guī)律,請(qǐng)?zhí)畛鰣D4中的數(shù)字.
圖1 圖2 圖3 圖4
8.水以恒速(即單位時(shí)間內(nèi)注入水的體積相同)向一個(gè)容器注水,最后把容器注滿(mǎn),在注水過(guò)程中,水面高度h隨時(shí)間t的變化規(guī)律如圖所示(圖中OABC為一折線),這個(gè)容器的形狀是圖中
A..
B
C
D
A
B
C
O
t
h
20. 在2008年春運(yùn)期間,我國(guó)南方出現(xiàn)大范圍冰雪災(zāi)害,導(dǎo)致某地電路斷電,該地供電局組織電工進(jìn)行搶修。供電局距離搶修工地15千米,
2、搶修車(chē)裝載著所需材料先從供電局出發(fā),15分鐘后,電工乘吉普車(chē)從同一地點(diǎn)出發(fā),結(jié)果他們同時(shí)到達(dá)搶修工地。已知吉普車(chē)速度是搶修車(chē)速度的1.5倍,求這兩種車(chē)的速度.
21.(本小題滿(mǎn)分5分)
將直線向左平移2個(gè)單位后得到直線l,若直線l與反比例函數(shù)的圖象的交點(diǎn)為(2,-m).
(1)求直線l的解析式及直線l與兩坐標(biāo)軸的交點(diǎn);
(2)求反比例函數(shù)的解析式.
25.(1)如圖25-1,在四邊形ABCD中,AB=AD,∠B=∠D=90°,E、F分別是邊BC、CD上的點(diǎn),且∠EAF=∠BAD.求證:EF=BE+FD;
(2) 如圖25-2在四邊形ABCD中,AB=AD,
3、
∠B+∠D=180°,E、F分別是邊BC、CD上的點(diǎn),
且∠EAF=∠BAD, (1)中的結(jié)論是否仍然成立?
不用證明.
(3) 如圖25-3在四邊形ABCD中,AB=AD,
∠B+∠ADC=180°,E、F分別是邊BC、CD延長(zhǎng)線上的點(diǎn),且∠EAF=∠BAD, (1)中的結(jié)論是否仍然成立?若成立,請(qǐng)證明;若不成立,請(qǐng)寫(xiě)出它們之間的數(shù)量關(guān)系,并證明.
22.(本小題滿(mǎn)分5分)
已知: 如圖, 在直角梯形ABCD中,AD∥BC,BC=5,CD=6,∠DCB=60°,
∠ABC=90°.等邊三角形MPN(N為不動(dòng)點(diǎn))的邊長(zhǎng)為,邊MN和直角梯形ABCD的底邊BC都
4、在直線上,NC=8.將直角梯形ABCD向左翻折180°,翻折一次得到圖形①,翻折二次得到圖形②,如此翻折下去.
(1) 求直角梯形ABCD的面積;
(2) 將直角梯形ABCD向左翻折二次,如果此時(shí)等邊三角形的邊長(zhǎng)a≥2,請(qǐng)直接寫(xiě)出這時(shí)兩圖形重疊部分的面積是多少?
(3) 將直角梯形ABCD向左翻折三次,如果第三次翻折得到的直角梯形與等邊三角形重疊部分的面積等于直角梯形ABCD的面積,請(qǐng)直接寫(xiě)出這時(shí)等邊三角形的邊長(zhǎng)a至少應(yīng)為多少?
24.在矩形ABCD中,點(diǎn)E是AD邊上一點(diǎn),連結(jié)BE,且BE=2AE, BD是∠EBC的平分線.點(diǎn)P從點(diǎn)E出發(fā)沿射線ED運(yùn)動(dòng),過(guò)點(diǎn)P作PQ∥BD交直線
5、BE于點(diǎn)Q.
(1)當(dāng)點(diǎn)P在線段ED上時(shí)(如圖①),求證:;
(2)當(dāng)點(diǎn)P在線段ED的延長(zhǎng)線上時(shí)(如圖②),請(qǐng)你猜想三者之間的數(shù)量關(guān)系(直接寫(xiě)出結(jié)果,不需說(shuō)明理由);
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到線段ED的中點(diǎn)時(shí)(如圖③),連結(jié)QC,過(guò)點(diǎn)P作PF⊥QC,垂足為F,PF交BD于點(diǎn)G.若BC=12,求線段PG的長(zhǎng).
25.如圖,在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(4,0),點(diǎn)B(0,3),點(diǎn)P從點(diǎn)B出發(fā)沿BA方向向點(diǎn)A勻速運(yùn)動(dòng),速度為每秒1個(gè)單位長(zhǎng)度,點(diǎn)Q從點(diǎn)A出發(fā)沿AO方向向點(diǎn)O勻速運(yùn)動(dòng),速度為每秒2個(gè)單位長(zhǎng)度,連結(jié)PQ.若設(shè)運(yùn)動(dòng)的時(shí)間為t秒
(0<t<2).
(1)求直線
6、AB的解析式;
(2)設(shè)△AQP的面積為,求與之間的函數(shù)關(guān)系式;
(3)是否存在某一時(shí)刻,使線段PQ恰好把△AOB的周長(zhǎng)和面積同時(shí)平分?若存在,請(qǐng)求出此時(shí)的值;若不存在,請(qǐng)說(shuō)明理由;
(4)連結(jié)PO,并把△PQO沿QO翻折,得到四邊形,那么是否存在某一時(shí)刻,使四邊形為菱形?若存在,請(qǐng)求出此時(shí)點(diǎn)Q的坐標(biāo)和菱形的邊長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
參考答案
12. 7 9 8.A
20. 解:設(shè)搶修車(chē)的速度為x千米/時(shí),則吉普車(chē)的速度為1.5x千米/時(shí).
由題意得 解得,x=20
7、
經(jīng)檢驗(yàn)x=20是原方程的根,并且符合題意. 當(dāng)x=20時(shí),1.5x=30
答:搶修車(chē)的速度為20千米/時(shí),吉普車(chē)的速度為30千米/時(shí).
21. 解:(1)直線向左平移2個(gè)單位后得到直線l的解析式為:y=x+3
直線l與y軸的交點(diǎn)為:(0,3),與x軸的交點(diǎn)為:(-3,0)
(2)∵直線l與反比例函數(shù)的圖象的交點(diǎn)為(2,-m)
∴m=-5 ∴k=10
8、 ∴反比例函數(shù)的解析式為:
22.(1)垂直(CD⊥OM) (2)CM=;
25.
解:(1)證明:延長(zhǎng)EB到G,使BG=DF,聯(lián)結(jié)AG.
∵∠ABG=∠ABC=∠D=90°, AB=AD,
∴△ABG≌△ADF.
∴AG=AF, ∠1=∠2. --------------------1分
∴∠1+∠3=∠2+∠3=∠EAF=∠BAD.
∴∠GAE=∠EAF.
又AE=AE,∴△AEG≌△AEF.∴EG=EF. ∵EG=BE+BG.∴EF= BE+FD
9、(2) (1)中的結(jié)論EF= BE+FD仍然成立.
(3)結(jié)論EF=BE+FD不成立,應(yīng)當(dāng)是EF=BE-FD.
證明:在BE上截取BG,使BG=DF,連接AG.
∵∠B+∠ADC=180°,∠ADF+∠ADC=180°,
∴∠B=∠ADF.
∵AB=AD,
∴△ABG≌△ADF.
∴∠BAG=∠DAF,AG=AF.
∴∠BAG+∠EAD=∠DAF+∠EAD
=∠EAF =∠BAD.
∴∠GAE=∠EAF.
∵AE=AE,
∴△AEG≌△AEF.
∴EG=EF ---------------------6分
∵EG=BE-BG
10、
∴EF=BE-FD. ---------------------7分
22.(本小題滿(mǎn)分5分)
解:(1)如圖,過(guò)點(diǎn)D作DE⊥BC于點(diǎn)E.
∠ABC=90°,
∴.
又,
∴四邊形ABED是矩形.
∴AD=BE .
在Rt△DEC中,∠DCB=60°,
∴DE = DC?sin60°=6×=3,……………………………………………1分
11、 CE= DC·cos60°=6×=3.
∴AD=BE =BC-CE=5-3=2.……………………………………………………2分
∴直角梯形ABCD的面積=.……………3分
(2)重疊部分的面積等于. ………………………………………………4分
(3)等邊三角形的邊長(zhǎng)a至少為10. ………………………………………………5分
24.(1)證明:如圖①,∵四邊形ABCD是矩形,
,AD∥BC.
.
∵BE=2AE,
.
.
∵BD是∠EBC的平分線,
∴.
.
,,.
,.
過(guò)點(diǎn)E作垂足為M,.
.
. 1分
,
. 2分
(2)解:當(dāng)點(diǎn)
12、P在線段ED的延長(zhǎng)線上時(shí),猜想:.…………………4分
(3)解:連結(jié)PC交BD于點(diǎn)N(如圖③)
點(diǎn)P是線段ED的中點(diǎn),BE=DE=2AE,BC=12,
.
,
,.
..
, .
,.
,. 5分
,,
.
,
. 6分
.
. 7分
25.解:(1)設(shè)直線AB的解析式為,
∴ 解得
∴直線AB的解析式是. 1分
(2)在Rt△AOB中,,
依題意,得BP = t,AP = 5-t,AQ = 2t,
過(guò)點(diǎn)P作PM⊥AO于M.
∵△APM ∽△ABO,
∴.
∴.
∴.………………………2分
∴. 3分
(3)
13、不存在某一時(shí)刻,使線段PQ恰好把△AOB的周長(zhǎng)和面積同時(shí)平分.
若PQ把△AOB周長(zhǎng)平分,則AP+AQ=BP+BO+OQ.
∴.
解得. 4分
若PQ把△AOB面積平分,則.
∴-+3t=3.
∵ t=1代入上面方程不成立,
∴不存在某一時(shí)刻t,使線段PQ把△AOB的周長(zhǎng)和面積同時(shí)平分. 5分
(4)存在某一時(shí)刻,使四邊形為菱形.過(guò)點(diǎn)P作 PN⊥BO于N,若四邊形PQP ′ O是菱形,則有PQ=PO.∵PM⊥AO于M,∴QM=OM.∵PN⊥BO于N,可得△PBN∽△ABO.∴ . ∴.∴.∴.∴.∴.
∴當(dāng)時(shí),四邊形PQP ′ O 是菱形. 6分
∴OQ=4-2t =.∴點(diǎn)Q的坐標(biāo)是(,0). 7分
∵,,
在Rt△PMO中,,
∴菱形PQP ′O的邊長(zhǎng)為. 8分