5、用此法求解. 8.導數(shù)的幾何意義 (1)f(x0)的幾何意義:曲線yf(x)在點(x0,f(x0))處的切線的斜率,該切線的方程為yf(x0)f(x0)(xx0). (2)切點的兩大特征:在曲線yf(x)上;在切線上.,9.利用導數(shù)研究函數(shù)的單調(diào)性 (1)求可導函數(shù)單調(diào)區(qū)間的一般步驟 求函數(shù)f(x)的定義域; 求導函數(shù)f(x); 由f(x)0的解集確定函數(shù)f(x)的單調(diào)增區(qū)間,由f(x)<0的解集確定函數(shù)f(x)的單調(diào)減區(qū)間. (2)由函數(shù)的單調(diào)性求參數(shù)的取值范圍 若可導函數(shù)f(x)在區(qū)間M上單調(diào)遞增,則f(x)0(xM)恒成立;若可導函數(shù)f(x)在區(qū)間M上單調(diào)遞減,則f(x)0(xM)恒成立
6、;,若可導函數(shù)在某區(qū)間上存在單調(diào)遞增(減)區(qū)間,f(x)0(或f(x)<0)在該區(qū)間上存在解集; 若已知f(x)在區(qū)間I上的單調(diào)性,區(qū)間I中含有參數(shù)時,可先求出f(x)的單調(diào)區(qū)間,則I是其單調(diào)區(qū)間的子集. 10.利用導數(shù)研究函數(shù)的極值與最值 (1)求函數(shù)的極值的一般步驟 確定函數(shù)的定義域; 解方程f(x)0;,判斷f(x)在方程f(x)0的根x0兩側的符號變化: 若左正右負,則x0為極大值點; 若左負右正,則x0為極小值點; 若不變號,則x0不是極值點. (2)求函數(shù)f(x)在區(qū)間a,b上的最值的一般步驟 求函數(shù)yf(x)在a,b內(nèi)的極值; 比較函數(shù)yf(x)的各極值與端點處的函數(shù)值f(a),
7、f(b)的大小,最大的一個是最大值,最小的一個是最小值.,易錯提醒,1.解決函數(shù)問題時要注意函數(shù)的定義域,要樹立定義域優(yōu)先原則. 2.解決分段函數(shù)問題時,要注意與解析式對應的自變量的取值范圍. 3.求函數(shù)單調(diào)區(qū)間時,多個單調(diào)區(qū)間之間不能用符號“”和“或”連接,可用“及”連接或用“,”隔開.單調(diào)區(qū)間必須是“區(qū)間”,而不能用集合或不等式代替. 4.判斷函數(shù)的奇偶性,要注意定義域必須關于原點對稱,有時還要對函數(shù)式化簡整理,但必須注意使定義域不受影響. 5.準確理解基本初等函數(shù)的定義和性質(zhì).如函數(shù)yax(a0,a1)的單調(diào)性容易忽視字母a的取值討論,忽視ax0;對數(shù)函數(shù)ylogax(a0,a1)容易忽
8、視真數(shù)與底數(shù)的限制條件.,6.易混淆函數(shù)的零點和函數(shù)圖象與x軸的交點,不能把函數(shù)零點、方程的解、不等式解集的端點值進行準確互化. 7.已知可導函數(shù)f(x)在(a,b)上單調(diào)遞增(減),則f(x)0(0)對x(a,b)恒成立,不能漏掉“”,且需驗證“”不能恒成立;已知可導函數(shù)f(x)的單調(diào)遞增(減)區(qū)間為(a,b),則f(x)0(<0)的解集為(a,b). 8.f(x)0的解不一定是函數(shù)f(x)的極值點.一定要檢驗在xx0的兩側f(x)的符號是否發(fā)生變化,若變化,則為極值點;若不變化,則不是極值點.,回扣訓練,解析,1,2,3,4,5,6,7,8,9,10,11,12,14,13,16,15,答
9、案,1.若曲線f(x)x44x在點A處的切線平行于x軸,則點A的坐標為 A.(1,2) B.(1,3) C.(1,0) D.(1,5),,解析對f(x)x44x,求導得f(x)4x34, 由在點A處的切線平行于x軸, 可得4x340, 解得x1,即點A的坐標為(1,3).,答案,1,2,3,4,5,6,7,8,9,10,11,12,14,13,16,15,解析,解析依題意,f(3)f(32)f(1) f(12)f(1)112,故選D.,,答案,1,2,3,4,5,6,7,8,9,10,11,12,14,13,16,15,解析,解析根據(jù)f(x)的符號,f(x)圖象應該是先下降后上升,最后下降,排
10、除A,D; 從適合f(x)0的點可以排除B,故選C.,3.若函數(shù)yf(x)的導函數(shù)yf(x)的圖象如圖所示,則yf(x)的圖象可能為,,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,14,13,16,15,4.(2016全國)函數(shù)y2x2e|x|在2,2的圖象大致為,,1,2,3,4,5,6,7,8,9,10,11,12,14,13,16,15,解析f(2)8e282.820,排除A; f(2)8e20時,f(x)2x2ex,f(x)4xex,,答案,1,2,3,4,5,6,7,8,9,10,11,12,14,13,16,15,解析,5.函數(shù)f(x)ex4x3的零點所在的區(qū)
11、間為,,解析,答案,1,2,3,4,5,6,7,8,9,10,11,12,14,13,16,15,,解析因為函數(shù)f(x)是奇函數(shù),且在0,2上單調(diào)遞增, 所以函數(shù)f(x)在2,2上單調(diào)遞增. 由f(log2m)
12、,7,8,9,10,11,12,14,13,16,15,T1,f(6)f(1). 當x<0時,f(x)x31且當1x1時,f(x)f(x), f(6)f(1)f(1)2,故選D.,解析,答案,1,2,3,4,5,6,7,8,9,10,11,12,14,13,16,15,9.已知函數(shù)f(x)x3ax2bxa2在x1處有極值10,則f(2)等于 A.11或18 B.11 C.18 D.17或18,,1,2,3,4,5,6,7,8,9,10,11,12,14,13,16,15,解析函數(shù)f(x)x3ax2bxa2在x1處有極值10, 又f(x)3x22axb,f(1)10,且f(1)0,,f(x)x3
13、4x211x16, f(2)18.,解析,答案,1,2,3,4,5,6,7,8,9,10,11,12,14,13,16,15,10.已知奇函數(shù)f(x)是定義在R上的可導函數(shù),其導函數(shù)為f(x),當x0時,有2f(x)xf(x)x2,則不等式(x2 018)2f(x2 018)4f(2)<0的解集為 A.(,2 016) B.(2 016,2 012) C.(,2 018) D.(2 016,0),,1,2,3,4,5,6,7,8,9,10,11,12,14,13,16,15,解析由題意觀察聯(lián)想可設g(x)x2f(x),g(x)2xf(x)x2f(x), 結合條件x0,2f(x)xf(x)x2,
14、 得g(x)2xf(x)x2f(x)0,g(x)x2f(x)在(0,)上為增函數(shù). 又f(x)為R上的奇函數(shù),所以g(x)為奇函數(shù), 所以g(x)在(,0)上為增函數(shù). 由(x2 018)2f(x2 018)4f(2)<0, 可得(x2 018)2f(x2 018)<4f(2), 即g(x2 018)
15、點坐標為(t,t3ata). 由題意知,f(x)3x2a, 切線的斜率為ky|xt3t2a, 所以切線方程為y(t3ata)(3t2a)(xt). 將點(1,0)代入式,得,1,2,3,4,5,6,7,8,9,10,11,12,14,13,16,15,1,2,3,4,5,6,7,8,9,10,11,12,14,13,16,15,解析,答案,4,1,2,3,4,5,6,7,8,9,10,11,12,14,13,16,15,解析因為0 x1,所以2x21, 所以525x251,而520.02, 所以0 x1不合題意,,故至少要過4小時后才能開車.,解析,1,2,3,4,5,6,7,8,9,10,1
16、1,12,14,13,16,15,答案,解析由f(1x)f(1x)可知,函數(shù)關于x1對稱,因為f(x)是偶函數(shù),所以f(1x)f(1x)f(x1), 即f(x2)f(x),所以函數(shù)的周期是2,,1,2,3,4,5,6,7,8,9,10,11,12,14,13,16,15,作出函數(shù)yf(x)和直線yk(x1)的圖象, 要使直線kxyk0(k0)與函數(shù)f(x)的 圖象有且僅有三個交點,,解析,1,2,3,4,5,6,7,8,9,10,11,12,14,13,16,15,14.函數(shù)f(x)x33a2xa(a0)的極大值是正數(shù),極小值是負數(shù),則a的 取值范圍是_____________.,答案,1,2
17、,3,4,5,6,7,8,9,10,11,12,14,13,16,15,解析f(x)3x23a23(xa)(xa), 由f(x)0,得xa, 當aa或x0,函數(shù)單調(diào)遞增. f(a)a33a3a0且f(a)a33a3a<0,,解答,15.已知函數(shù)f(x) . (1)若f(x)在區(qū)間(,2)上為單調(diào)遞增函數(shù),求實數(shù)a的取值范圍;,1,2,3,4,5,6,7,8,9,10,11,12,14,13,16,15,由已知f(x)0對x(,2)恒成立, 故x1a對x(,2)恒成立, 1a2,a1. 故實數(shù)a的取值范圍為(,1.,證明,(2)若a0,x0<1,設直線yg(x)為函數(shù)f(x)的圖象在xx0處的
18、切線,求證:f(x)g(x).,1,2,3,4,5,6,7,8,9,10,11,12,14,13,16,15,函數(shù)f(x)的圖象在xx0處的切線方程為 yg(x)f(x0)(xx0)f(x0). 令h(x)f(x)g(x)f(x)f(x0)(xx0)f(x0),xR, 則h(x)f(x)f(x0),1,2,3,4,5,6,7,8,9,10,11,12,14,13,16,15,設(x)(1x) (1x0)ex,xR, 則(x) (1x0)ex,x0<1,(x)<0,,(x)在R上單調(diào)遞減,又(x0)0, 當x0,當xx0時,(x)0,當xx0時,h(x)<0, h(x)在區(qū)間(,x0)上為增函
19、數(shù),在區(qū)間(x0,)上為減函數(shù),當xR時,h(x)h(x0)0, f(x)g(x).,1,2,3,4,5,6,7,8,9,10,11,12,14,13,16,15,1,2,3,4,5,6,7,8,9,10,11,12,14,13,16,15,解答,(1)求函數(shù)f(x)的單調(diào)區(qū)間;,當x0;當x0時,f(x)<0, f(x)在(,0)上單調(diào)遞增,在(0,)上單調(diào)遞減. f(x)的單調(diào)遞增區(qū)間為(,0), 單調(diào)遞減區(qū)間為(0,).,解答,1,2,3,4,5,6,7,8,9,10,11,12,14,13,16,15,(2)設函數(shù)(x)xf(x)tf(x) ,存在實數(shù)x1,x20,1,使得2(x1)<
20、(x2)成立,求實數(shù)t的取值范圍.,1,2,3,4,5,6,7,8,9,10,11,12,14,13,16,15,解存在x1,x20,1,使得2(x1)<(x2)成立, 則2(x)min<(x)max.,當t1時,(x)0,(x)在0,1上單調(diào)遞減,,1,2,3,4,5,6,7,8,9,10,11,12,14,13,16,15,當t0時,(x)0,(x)在0,1上單調(diào)遞增, 2(0)<(1),即t<32e<0; 當0