2020版高考數(shù)學一輪總復習 第八章 立體幾何 第5節(jié) 直線、平面垂直的判定及其性質課件.ppt

上傳人:tia****nde 文檔編號:14282370 上傳時間:2020-07-15 格式:PPT 頁數(shù):27 大?。?3.52MB
收藏 版權申訴 舉報 下載
2020版高考數(shù)學一輪總復習 第八章 立體幾何 第5節(jié) 直線、平面垂直的判定及其性質課件.ppt_第1頁
第1頁 / 共27頁
2020版高考數(shù)學一輪總復習 第八章 立體幾何 第5節(jié) 直線、平面垂直的判定及其性質課件.ppt_第2頁
第2頁 / 共27頁
2020版高考數(shù)學一輪總復習 第八章 立體幾何 第5節(jié) 直線、平面垂直的判定及其性質課件.ppt_第3頁
第3頁 / 共27頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2020版高考數(shù)學一輪總復習 第八章 立體幾何 第5節(jié) 直線、平面垂直的判定及其性質課件.ppt》由會員分享,可在線閱讀,更多相關《2020版高考數(shù)學一輪總復習 第八章 立體幾何 第5節(jié) 直線、平面垂直的判定及其性質課件.ppt(27頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、,第5節(jié)直線、平面垂直的判定及其性質,01,02,03,04,考點三,,考點一,考點二,例1 訓練1,線面垂直的判定與性質,面面垂直的判定與性質,平行與垂直的綜合問題(多維探究),診斷自測,例2-1 訓練2,例3-1 例3-2 例3-3 訓練3,診斷自測,,,考點一線面垂直的判定與性質,,,,,考點一線面垂直的判定與性質,,,,考點一線面垂直的判定與性質,考點一線面垂直的判定與性質,,證明因為AB為圓O的直徑,所以ACCB.,由余弦定理得CD2DB2BC22DBBCcos 303, 所以CD2DB2BC2,即CDAB. 因為PD平面ABC,CD平面ABC, 所以PDCD,由PDABD得,CD平

2、面PAB, 又PA平面PAB,所以PACD.,,考點二面面垂直的判定與性質,,證明(1)平面PAD底面ABCD, 且PA垂直于這兩個平面的交線AD,PA平面PAD, PA底面ABCD. (2)ABCD,CD2AB,E為CD的中點, ABDE,且ABDE. 四邊形ABED為平行四邊形 BEAD. 又BE平面PAD,AD平面PAD, BE平面PAD.,,考點二面面垂直的判定與性質,,證明(3)ABAD,而且ABED為平行四邊形 BECD,ADCD, 由(1)知PA底面ABCD,CD平面ABCD, PACD,且PAADA,PA,AD平面PAD, CD平面PAD,又PD平面PAD, CDPD. E和F

3、分別是CD和PC的中點,PDEF. CDEF,又BECD且EFBEE, CD平面BEF,又CD平面PCD, 平面BEF平面PCD.,,考點二面面垂直的判定與性質,,考點二面面垂直的判定與性質,,,,考點二面面垂直的判定與性質,,,,考點二面面垂直的判定與性質,,,考點三平行與垂直的綜合問題(多維探究),,證明(1)取B1D1的中點O1,連接CO1,A1O1, 由于ABCD - A1B1C1D1是四棱柱, 所以A1O1OC,A1O1OC, 因此四邊形A1OCO1為平行四邊形, 所以A1OO1C, 又O1C平面B1CD1,A1O平面B1CD1, 所以A1O平面B1CD1.,,考點三平行與垂直的綜合

4、問題(多維探究),,證明(2)因為ACBD,E,M分別為AD和OD的中點, 所以EMBD, 又A1E平面ABCD,BD平面ABCD, 所以A1EBD, 因為B1D1BD,所以EMB1D1,A1EB1D1, 又A1E,EM平面A1EM,A1EEME, 所以B1D1平面A1EM, 又B1D1平面B1CD1,所以平面A1EM平面B1CD1.,,考點三平行與垂直的綜合問題(多維探究),考點三平行與垂直的綜合問題(多維探究),,(1)證明連接AC交BD于O,連接OF,如圖. 四邊形ABCD是矩形, O為AC的中點, 又F為EC的中點, OF為ACE的中位線, OFAE,又OF平面BDF,AE平面BDF,

5、 AE平面BDF.,,考點三平行與垂直的綜合問題(多維探究),,(2)解當P為AE中點時,有PMBE, 證明如下: 取BE中點H,連接DP,PH,CH, P為AE的中點,H為BE的中點, PHAB,又ABCD, PHCD, P,H,C,D四點共面,,P,考點三平行與垂直的綜合問題(多維探究),,平面ABCD平面BCE,平面ABCD平面BCEBC, CD平面ABCD,CDBC. CD平面BCE,又BE平面BCE, CDBE, BCCE,H為BE的中點, CHBE, 又CDCHC,BE平面DPHC, 又PM平面DPHC,BEPM,即PMBE.,,P,考點三平行與垂直的綜合問題(多維探究),考點三平

6、行與垂直的綜合問題(多維探究),,(1)解如圖,由已知ADBC, 故DAP或其補角即為異面直線AP與BC所成的角. 因為AD平面PDC,PD平面PDC, 所以ADPD.,,,考點三平行與垂直的綜合問題(多維探究),,(2)證明由(1)知ADPD, 又因為BCAD,所以PDBC. 又PDPB,BCPBB, 所以PD平面PBC. (3)解過點D作DFAB,交BC于點F,連接PF, 則DF與平面PBC所成的角等于AB與平面PBC所成的角. 因PD平面PBC,故PF為DF在平面PBC上的射影, 所以DFP為直線DF和平面PBC所成的角. 由于ADBC,DFAB,故BFAD1. 由已知,得CFBCBF2

7、.,,,考點三平行與垂直的綜合問題(多維探究),,(2)證明由(1)知ADPD, 又因為BCAD,所以PDBC. 又PDPB,BCPBB, 所以PD平面PBC. (3)解過點D作DFAB,交BC于點F,連接PF, 則DF與平面PBC所成的角等于AB與平面PBC所成的角. 因PD平面PBC,故PF為DF在平面PBC上的射影, 所以DFP為直線DF和平面PBC所成的角. 由于ADBC,DFAB,故BFAD1.,,,考點三平行與垂直的綜合問題(多維探究),,由已知,得CFBCBF2. 又ADDC,故BCDC.,,,考點三平行與垂直的綜合問題(多維探究),考點三平行與垂直的綜合問題(多維探究),,(1

8、)證明因為PDPC且點E為CD的中點, 所以PEDC. 又平面PDC平面ABCD, 且平面PDC平面ABCDCD,PE平面PDC, 所以PE平面ABCD, 又FG平面ABCD, 所以PEFG.,,考點三平行與垂直的綜合問題(多維探究),,(2)解由(1)知PE平面ABCD,PEAD, 又ADCD,PECDE, AD平面PDC,ADPD, PDC為二面角PADC的平面角, 在RtPDE中,PD4,DE3,,,考點三平行與垂直的綜合問題(多維探究),,(3)解如圖,連接AC, AF2FB,CG2GB,ACFG. 直線PA與FG所成角即直線PA與AC所成角PAC. 在RtPDA中,PA2AD2PD225,PA5. 又PC4. AC2CD2AD236945,,,,

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!