2020版高考數(shù)學(xué)一輪復(fù)習(xí) 第五章 平面向量、數(shù)系的擴充與復(fù)數(shù)的引入 5.3 平面向量的數(shù)量積與平面向量的應(yīng)用課件 文 北師大版.ppt

上傳人:tia****nde 文檔編號:14282130 上傳時間:2020-07-15 格式:PPT 頁數(shù):39 大小:1.39MB
收藏 版權(quán)申訴 舉報 下載
2020版高考數(shù)學(xué)一輪復(fù)習(xí) 第五章 平面向量、數(shù)系的擴充與復(fù)數(shù)的引入 5.3 平面向量的數(shù)量積與平面向量的應(yīng)用課件 文 北師大版.ppt_第1頁
第1頁 / 共39頁
2020版高考數(shù)學(xué)一輪復(fù)習(xí) 第五章 平面向量、數(shù)系的擴充與復(fù)數(shù)的引入 5.3 平面向量的數(shù)量積與平面向量的應(yīng)用課件 文 北師大版.ppt_第2頁
第2頁 / 共39頁
2020版高考數(shù)學(xué)一輪復(fù)習(xí) 第五章 平面向量、數(shù)系的擴充與復(fù)數(shù)的引入 5.3 平面向量的數(shù)量積與平面向量的應(yīng)用課件 文 北師大版.ppt_第3頁
第3頁 / 共39頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2020版高考數(shù)學(xué)一輪復(fù)習(xí) 第五章 平面向量、數(shù)系的擴充與復(fù)數(shù)的引入 5.3 平面向量的數(shù)量積與平面向量的應(yīng)用課件 文 北師大版.ppt》由會員分享,可在線閱讀,更多相關(guān)《2020版高考數(shù)學(xué)一輪復(fù)習(xí) 第五章 平面向量、數(shù)系的擴充與復(fù)數(shù)的引入 5.3 平面向量的數(shù)量積與平面向量的應(yīng)用課件 文 北師大版.ppt(39頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、5.3平面向量的數(shù)量積 與平面向量的應(yīng)用,知識梳理,考點自診,1.平面向量的數(shù)量積 (1)定義:已知兩個非零向量a與b,它們的夾角為,則數(shù)量|a||b|cos 叫做a與b的數(shù)量積(或內(nèi)積),記作ab,即ab=,規(guī)定零向量與任一向量的數(shù)量積為0,即0a=0. (2)幾何意義:數(shù)量積ab等于a的長度|a|與b在a的方向上的投影|b|cos 的乘積.,|a||b|cos ,知識梳理,考點自診,x1x2+y1y2,x1x2+y1y2=0,知識梳理,考點自診,3.平面向量數(shù)量積的運算律 (1)ab=ba(交換律). (2)ab=(ab)=a(b)(結(jié)合律). (3)(a+b)c=ac+bc(分配律).

2、,知識梳理,考點自診,1.平面向量數(shù)量積運算的常用公式: (1)(a+b)(a-b)=a2-b2. (2)(ab)2=a22ab+b2. 2.當a與b同向時,ab=|a||b|;當a與b反向時,ab=-|a||b|. 3.ab|a||b|.,知識梳理,考點自診,1.判斷下列結(jié)論是否正確,正確的畫“”,錯誤的畫“”. (1)一個非零向量在另一個非零向量方向上的投影為數(shù)量,且有正有負. () (2)若ab0,則a和b的夾角為銳角;若ab<0,則a和b的夾角為鈍角. () (3)若ab=0,則必有ab. () (4)(ab)c=a(bc). () (5)若ab=ac(a0),則b=c. (),,,,

3、,,,,知識梳理,考點自診,2.(2018全國2,4)已知向量a,b滿足|a|=1,ab=-1,則a(2a-b)=() A.4B.3C.2D.0,B,解析:a(2a-b)=2a2-ab=2-(-1)=3.,3.(2018山西呂梁一模,3)若|a|=1,|b|=2,且(a+b)a,則a與b的夾角為(),C,知識梳理,考點自診,4.(2017全國1,文13)已知向量a=(-1,2),b=(m,1),若向量a+b與a垂直,則m=.,7,解析:因為a=(-1,2),b=(m,1), 所以a+b=(m-1,3). 因為a+b與a垂直,所以(a+b)a=0,即-(m-1)+23=0,解得m=7.,2,考點

4、1,考點2,考點3,平面向量數(shù)量積的運算,C,考點1,考點2,考點3,考點1,考點2,考點3,思考求向量數(shù)量積的運算有幾種形式? 解題心得1.求兩個向量的數(shù)量積有三種方法: (1)當已知向量的模和夾角時,利用定義求解,即ab=|a||b|cos (其中是向量a與b的夾角). (2)當已知向量的坐標時,可利用坐標法求解,即若a=(x1,y1), b=(x2,y2),則ab=x1x2+y1y2. (3)利用數(shù)量積的幾何意義.數(shù)量積ab等于a的長度|a|與b在a的方向上的投影|b|cos 的乘積. 2.解決涉及幾何圖形的向量數(shù)量積運算問題時,可利用向量的加減運算或數(shù)量積的運算律化簡.但一定要注意向量

5、的夾角與已知平面角的關(guān)系是相等還是互補.,考點1,考點2,考點3,B,D,考點1,考點2,考點3,考點1,考點2,考點3,考點1,考點2,考點3,考點1,考點2,考點3,平面向量的模及應(yīng)用,B,A,考點1,考點2,考點3,考點1,考點2,考點3,考點1,考點2,考點3,思考求向量的模及求向量模的最值有哪些方法? 解題心得1.求向量的模的方法: (1)公式法,利用 及(ab)2=|a|22ab+|b|2,把向量的模的運算轉(zhuǎn)化為數(shù)量積運算; (2)幾何法,先利用向量加減法的平行四邊形法則或三角形法則作出向量,再利用余弦定理等方法求解. 2.求向量模的最值(或范圍)的方法: (1)求函數(shù)最值法

6、,把所求向量的模表示成某個變量的函數(shù)再求最值(或范圍); (2)數(shù)形結(jié)合法,弄清所求的模表示的幾何意義,結(jié)合動點表示的圖形求解.,考點1,考點2,考點3,對點訓(xùn)練2(1)(2018福建龍巖4月模擬,14)已知向量a與b的夾角為60,且|a|=1,|2a-b|= ,則|b|=. (2)已知向量a,b,其中|a|=2,|b|=1,且(a+b)a,則|a-2b|=.,4,考點1,考點2,考點3,平面向量數(shù)量積的應(yīng)用(多考向) 考向1求平面向量的夾角 例3(1)設(shè)向量 ,b=(x,-3),且ab,則向量a-b與a的夾角為() A.30B.60C.120D.150 (2)(2018湖南長郡中學(xué)

7、五模,14)已知a=(1,2),a-4b=(-15,-6),則a與b的夾角的余弦值為. 思考兩向量數(shù)量積的正負與兩向量的夾角有怎樣的關(guān)系?,B,考點1,考點2,考點3,考點1,考點2,考點3,考向2平面向量a在b上的投影,(2)(2018江西南昌三模,15)已知向量m=(1,2),n=(2,3),則m在m-n方向上的投影為. 思考求一向量在另一向量上的投影一般有哪些方法?,D,考點1,考點2,考點3,考點1,考點2,考點3,考向3在三角形中的應(yīng)用,A,考點1,考點2,考點3,考向4在解析幾何中的應(yīng)用,5,考點1,考點2,考點3,思考在向量與解析幾何相結(jié)合的題目中,向量起到怎樣的作用? 解題心得

8、1.數(shù)量積大于0說明不共線的兩個向量的夾角為銳角;數(shù)量積等于0說明不共線的兩個向量的夾角為直角;數(shù)量積小于0說明不共線的兩個向量的夾角為鈍角. 2.若a,b為非零向量, (夾角公式),則abab=0. 3.求一向量在另一向量上的投影有兩種方法:一是利用向量投影的概念求,二是利用向量的數(shù)量積求. 4.解決與向量有關(guān)的三角函數(shù)問題的一般思路是應(yīng)用轉(zhuǎn)化與化歸的數(shù)學(xué)思想,即通過向量的相關(guān)運算把問題轉(zhuǎn)化為三角函數(shù)問題.,考點1,考點2,考點3,5.向量在解析幾何中的作用 (1)載體作用:解決向量在解析幾何中的問題時關(guān)鍵是利用向量的意義、運算脫去“向量外衣”,導(dǎo)出曲線上點的坐標之間的關(guān)系,從而解決

9、有關(guān)距離、斜率、夾角、軌跡、最值等問題. (2)工具作用:利用數(shù)量積與共線定理可解決垂直、平行問題.特別地,向量垂直、平行的坐標表示對于解決解析幾何中的垂直、平行問題是一種比較可行的方法.,考點1,考點2,考點3,1,A,考點1,考點2,考點3,考點1,考點2,考點3,考點1,考點2,考點3,1.平面向量的坐標表示與向量表示的比較: 已知a=(x1,y1),b=(x2,y2),是向量a與b的夾角.,考點1,考點2,考點3,2.計算數(shù)量積的三種方法:定義、坐標運算、數(shù)量積的幾何意義,要靈活選用,與圖形有關(guān)的不要忽略數(shù)量積幾何意義的應(yīng)用. 3.利用向量垂直或平行的條件構(gòu)造方程或函數(shù)是求參數(shù)或最值問題常用的方法與技巧.,考點1,考點2,考點3,考點1,考點2,考點3,思想方法函數(shù)思想與數(shù)形結(jié)合思想在數(shù)量積中的應(yīng)用,答案:2,解析:因為b0,所以b=xe1+ye2,x0或y0.,反思提升求向量的夾角與模的范圍問題經(jīng)常應(yīng)用函數(shù)思想與數(shù)形結(jié)合思想.模的最值問題多采用將其表示為某一變量或某兩個變量的函數(shù),利用求函數(shù)值域的方法確定最值,體現(xiàn)了函數(shù)思想的運用,又多與二次函數(shù)、基本不等式相聯(lián)系;求向量夾角的范圍問題,根據(jù)條件,利用向量的線性運算的幾何意義,依據(jù)圖形通過數(shù)形結(jié)合確定夾角的范圍.,

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!