《(江蘇專用)2019高考數(shù)學(xué)二輪復(fù)習(xí) 第二篇 第24練 數(shù)列課件 理.ppt》由會員分享,可在線閱讀,更多相關(guān)《(江蘇專用)2019高考數(shù)學(xué)二輪復(fù)習(xí) 第二篇 第24練 數(shù)列課件 理.ppt(43頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、第二篇重點專題分層練,中高檔題得高分,第24練數(shù)列小題提速練,,明晰考情 1.命題角度:考查等差數(shù)列、等比數(shù)列基本量的計算,考查數(shù)列的通項及求和. 2.題目難度:中檔難度.,核心考點突破練,,,欄目索引,,,易錯易混專項練,高考押題沖刺練,考點一等差數(shù)列與等比數(shù)列,要點重組(1)在等差數(shù)列中,若mnpq(m,n,p,qN*),則amanapaq.,,核心考點突破練,(3)在等差數(shù)列an中,Sn,S2nSn,S3nS2n也成等差數(shù)列. (4)在等比數(shù)列中,若mnpq(m,n,p,qN*),則amanapaq. (5)在等比數(shù)列an中,Sn,S2nSn,S3nS2n也成等比數(shù)列(n為偶數(shù)且q1除外
2、).,解析,答案,1.(2018全國改編)記Sn為等差數(shù)列an的前n項和,若3S3S2S4,a12,則a5________.,10,解析設(shè)等差數(shù)列an的公差為d,由3S3S2S4,,將a12代入上式,解得d3, 故a5a1(51)d24(3)10.,2.已知等差數(shù)列an的前n項和為Sn,a91,S180,則Sn取最大值時n的值為_____.,9,解析方法一設(shè)公差為d,,解得a117,d2,所以Sn17nn(n1)n218n, 當(dāng)n9時,Sn取最大值.,所以a1a18a9a100,所以a101, 即數(shù)列an中前9項為正值,從第10項開始為負值, 故其前9項之和最大.,答案,解析,答案,解析,3.
3、(2018江蘇高考沖刺預(yù)測卷)已知各項均為正數(shù)的等比數(shù)列an滿足a1 ,且a2a82a53,則a9________.,18,解得a53(舍負),即a1q43,,答案,解析,4.設(shè)an是公比為q的等比數(shù)列,|q|1,令bnan1(n1,2,),若數(shù)列bn有連續(xù)四項在集合53,23,19,37,82中,則6q________.,9,解析由題意知,數(shù)列bn有連續(xù)四項在集合53,23,19,37,82中, 說明an有連續(xù)四項在集合54,24,18,36,81中, 由于an中連續(xù)四項至少有一項為負, q1,an的連續(xù)四項為24,36,54,81,,考點二數(shù)列的通項與求和,方法技巧(1)已知數(shù)列的遞推關(guān)系
4、,求數(shù)列的通項時,通常利用累加法、累乘法、構(gòu)造法求解.,解析數(shù)列an滿足a10,,答案,解析,答案,解析,解析數(shù)列an滿足a1a2a3an (nN*), 當(dāng)n1時,a12; 當(dāng)n2時,a1a2a3an1 , 可得an22n1,n2,當(dāng)n1時,a12滿足上式,,,答案,解析,7.(2018全國)記Sn為數(shù)列an的前n項和.若Sn2an1,則S6______.,63,解析Sn2an1,當(dāng)n2時,Sn12an11, anSnSn12an2an1(n2), 即an2an1(n2). 當(dāng)n1時,a1S12a11,得a11. 數(shù)列an是首項a11,公比q2的等比數(shù)列,,S612663.,答案,解析,
5、考點三數(shù)列的綜合應(yīng)用,方法技巧(1)以函數(shù)為背景的數(shù)列問題、可以利用函數(shù)的性質(zhì)等確定數(shù)列的通項an、前n項和Sn的關(guān)系. (2)和不等式有關(guān)的數(shù)列問題,可以利用不等式的性質(zhì)、基本不等式、函數(shù)的單調(diào)性等求最值來解決.,答案,解析,9.已知函數(shù)f(x)x2ax的圖象在點A(0,f(0))處的切線l與直線2xy2 0平行,若數(shù)列 的前n項和為Sn,則S20的值為________.,解析因為f(x)x2ax,所以f(x)2xa, 又函數(shù)f(x)x2ax的圖象在點A(0,f(0))處的切線l與直線2xy20平行, 所以f(0)a2,所以f(x)x22x,,答案,解析,10.已知等差數(shù)列an的前n項和
6、Snn2bnc,等比數(shù)列bn的前n項和Tn3nd,則向量a(c,d)的模為________. 解析由等差數(shù)列與等比數(shù)列的前n項和公式知,c0,d1, 所以向量a(c,d)的模為1.,1,11.設(shè)等比數(shù)列an滿足a1a310,a2a45,則a1a2an的最大值為______.,64,解析由已知a1a310,a2a4a1qa3q5,,又nN*,所以當(dāng)n3或4時,a1a2an取最大值為2664.,答案,解析,,,答案,解析,12.已知函數(shù)f(x)3|x5|2|x2|,數(shù)列an滿足a1<2,an1f(an),nN*. 若要使數(shù)列an成等差數(shù)列,則a1的取值集合為___________________.
7、,所以若數(shù)列an成等差數(shù)列, 則當(dāng)a1為直線yx11與直線yx11的交點的橫坐標, 即a111時,數(shù)列an是以11為首項,11為公差的等差數(shù)列; 當(dāng)f(a1)a1,即5a119a1或a111a1,,,易錯易混專項練,答案,解析,1.在數(shù)列an中,a11,a22,當(dāng)整數(shù)n1時,Sn1Sn12(SnS1)都成立,則S15________.,211,解析當(dāng)n1時,Sn1SnSnSn12, an1an2,n2, an1an2,n2. 數(shù)列an從第二項開始組成公差為2的等差數(shù)列,,2.已知數(shù)列an滿足:an1an(12an1),a11,數(shù)列bn滿足:bn anan1,則數(shù)列bn的前2 019項的和S2
8、019________.,解析由an1an(12an1),,答案,解析,解析由題意,得a2a12,a3a24,,anan12(n1),n2, 累加整理可得ann2n33,n2, 當(dāng)n1時,a133也滿足,,答案,解析,解題秘籍(1)利用anSnSn1尋找數(shù)列的關(guān)系,一定要注意n2這個條件. (2)數(shù)列的最值問題可以利用基本不等式或函數(shù)的性質(zhì)求解,但要考慮最值取到的條件.,,高考押題沖刺練,1,2,3,4,5,6,7,8,9,10,11,12,答案,解析,1.等差數(shù)列an的首項為1,公差不為0.若a2,a3,a6成等比數(shù)列,則an的前6項的和為________.,解析由已知條件可得a11,d0,
9、,解得d2.,24,1,2,3,4,5,6,7,8,9,10,11,12,答案,解析,8,解析依題意得a1a32a2, 即S3a1a2a32, 數(shù)列S3,S6S3,S9S6成等比數(shù)列, 即數(shù)列2,4,S9S6成等比數(shù)列, 于是有S9S68,即a7a8a98.,1,2,3,4,5,6,7,8,9,10,11,12,答案,解析,18,3.已知數(shù)列an滿足an1an2,a15,則|a1||a2||a6|________. 解析由an1an2可得數(shù)列an是等差數(shù)列,公差d2, 又a15,所以an2n7, 所以|a1||a2||a3||a4||a5||a6|53113518.,5,1,2,3,4,5,6
10、,7,8,9,10,11,12,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,答案,解析,5.在等比數(shù)列an中,a12,前n項和為Sn,若數(shù)列an1也是等比數(shù)列,則Sn________.,2n,解析設(shè)等比數(shù)列an的公比為q, 由于an1也是等比數(shù)列, 所以(a21)2(a11)(a31),,即2a2a1a3, 即2q1q2,解得q1, 所以數(shù)列an是常數(shù)列,所以Sn2n.,1,2,3,4,5,6,7,8,9,10,11,12,答案,解析,解析設(shè)S2k,則S43k, 由數(shù)列an為等比數(shù)列(易知數(shù)列an的公比q1), 得S2,S4S2,S6S4為等比數(shù)列, 又S2k,S4S22
11、k,S6S44k,,1,2,3,4,5,6,7,8,9,10,11,12,答案,解析,7.設(shè)an是任意等差數(shù)列,它的前n項和、前2n項和與前4n項和分別為X,Y,Z,則下列等式中恒成立的是________. 2XZ3Y;4XZ4Y; 2X3Z7Y;8XZ6Y. 解析根據(jù)等差數(shù)列的性質(zhì)X,YX,S3nY,ZS3n成等差數(shù)列, 2(YX)XS3nY,S3n3Y3X, 又2(S3nY)(YX)(ZS3n), 4Y6XYXZ3Y3X, 8XZ6Y.,,1,2,3,4,5,6,7,8,9,10,11,12,答案,解析,解析由an1ann1,得an1ann1, 則a2a111, a3a221, a4a33
12、1, , anan1(n1)1,n2. 以上等式相加,得ana1123(n1)n1,n2, 把a11代入上式得,,1,2,3,4,5,6,7,8,9,10,11,12,1,2,3,4,5,6,7,8,9,10,11,12,1,2,3,4,5,6,7,8,9,10,11,12,答案,解析,9.公差不為0的等差數(shù)列an的部分項 , , ,構(gòu)成等比數(shù)列,且k11,k22,k36,則k4________.,22,解析根據(jù)題意可知,等差數(shù)列的a1,a2,a6項成等比數(shù)列, 設(shè)等差數(shù)列的公差為d,則有(a1d)2a1(a15d), 解得d3a1,故a24a1,a616a1, 所以 a1(k41)(3a
13、1)64a1,解得k422.,1,2,3,4,5,6,7,8,9,10,11,12,答案,解析,10.若Sn為數(shù)列an的前n項和,且2Snan1an,a14,則數(shù)列an的 通項公式為an_________________.,解析因為2Snan1an,a14, 所以n1時,244a2,解得a22. n2時,2Sn1anan1, 可得2anan1ananan1, 所以an0(舍去)或an1an12. n2時,an1an12,可得數(shù)列an的奇數(shù)項與偶數(shù)項均為等差數(shù)列. 所以a2k142(k1)2k2,kN*, a2k22(k1)2k,kN*.,1,2,3,4,5,6,7,8,9,10,11,12,,
14、11.古代數(shù)學(xué)著作九章算術(shù)有如下問題:“今有女子善織,日自倍,五日織五尺,問日織幾何?”意思是:“一女子善于織布,每天織的布都是前一天的2倍,已知她5天共織布5尺,問這個女子每天分別織布多少?” 根據(jù)上題的已知條件,可求得該女子第3天所織布的尺數(shù)為______.,解析設(shè)這個女子每天分別織布an尺, 則數(shù)列an是等比數(shù)列,公比q2.,1,2,3,4,5,6,7,8,9,10,11,12,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,答案,解析,12.已知數(shù)列an的前n項和為Sn,Snn22n,bnanan1cos(n1),數(shù)列bn的前n項和為Tn,若Tntn2對nN*恒成立,
15、則實數(shù)t的取值范圍是______________.,(,5,解析n1時,a1S13. n2,anSnSn1n22n(n1)22(n1)2n1.n1時也成立, 所以an2n1. 所以bnanan1cos(n1) (2n1)(2n3)cos(n1), n為奇數(shù)時,cos(n1)1, n為偶數(shù)時,cos(n1)1. 因此當(dāng)n為奇數(shù)時,Tn355779911(2n1)(2n3),1,2,3,4,5,6,7,8,9,10,11,12,因為Tntn2對nN*恒成立,,所以t2. 當(dāng)n為偶數(shù)時,Tn355779911(2n1)(2n3) 4(59132n1)2n26n. 因為Tntn2對nN*恒成立,,綜上可得t5.,1,2,3,4,5,6,7,8,9,10,11,12,本課結(jié)束,