2018-2019學(xué)年高中數(shù)學(xué) 第三章 三角函數(shù) 3.4 函數(shù)y=Asin(ωx+φ)的圖象與性質(zhì) 3.4.1 三角函數(shù)的周期性課件 湘教版必修2.ppt

上傳人:tia****nde 文檔編號(hào):14096291 上傳時(shí)間:2020-07-03 格式:PPT 頁數(shù):26 大小:12.91MB
收藏 版權(quán)申訴 舉報(bào) 下載
2018-2019學(xué)年高中數(shù)學(xué) 第三章 三角函數(shù) 3.4 函數(shù)y=Asin(ωx+φ)的圖象與性質(zhì) 3.4.1 三角函數(shù)的周期性課件 湘教版必修2.ppt_第1頁
第1頁 / 共26頁
2018-2019學(xué)年高中數(shù)學(xué) 第三章 三角函數(shù) 3.4 函數(shù)y=Asin(ωx+φ)的圖象與性質(zhì) 3.4.1 三角函數(shù)的周期性課件 湘教版必修2.ppt_第2頁
第2頁 / 共26頁
2018-2019學(xué)年高中數(shù)學(xué) 第三章 三角函數(shù) 3.4 函數(shù)y=Asin(ωx+φ)的圖象與性質(zhì) 3.4.1 三角函數(shù)的周期性課件 湘教版必修2.ppt_第3頁
第3頁 / 共26頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2018-2019學(xué)年高中數(shù)學(xué) 第三章 三角函數(shù) 3.4 函數(shù)y=Asin(ωx+φ)的圖象與性質(zhì) 3.4.1 三角函數(shù)的周期性課件 湘教版必修2.ppt》由會(huì)員分享,可在線閱讀,更多相關(guān)《2018-2019學(xué)年高中數(shù)學(xué) 第三章 三角函數(shù) 3.4 函數(shù)y=Asin(ωx+φ)的圖象與性質(zhì) 3.4.1 三角函數(shù)的周期性課件 湘教版必修2.ppt(26頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、第3章——,三角函數(shù),3.4 函數(shù)y=Asin (ωx+φ)的圖象與性質(zhì) 3.4.1 三角函數(shù)的周期性,[學(xué)習(xí)目標(biāo)],1.了解周期函數(shù)、周期、最小正周期的定義. 2.理解函數(shù)y=sin x,y=cos x,y=tan x都是周期函數(shù),都存在最小正周期. 3.會(huì)求函數(shù)y=Asin(ωx+φ)及y=Acos(ωx+φ)的周期.,,1,預(yù)習(xí)導(dǎo)學(xué) 挑戰(zhàn)自我,點(diǎn)點(diǎn)落實(shí),,2,課堂講義 重點(diǎn)難點(diǎn),個(gè)個(gè)擊破,,3,當(dāng)堂檢測(cè) 當(dāng)堂訓(xùn)練,體驗(yàn)成功,1.觀察單位圓中的三角函數(shù)線知正弦值每相隔2π個(gè)單位重復(fù)出現(xiàn),其理論依據(jù)是什么? 答 誘導(dǎo)公式sin(x+2kπ)=sin x(k∈Z)當(dāng)自變

2、量x的值增加2π的整數(shù)倍時(shí),函數(shù)值重復(fù)出現(xiàn).,[知識(shí)鏈接],2.設(shè)f(x)=sin x,則sin(x+2kπ)=sin x可以怎樣表示? 答 f(x+2kπ)=f(x)這就是說:當(dāng)自變量x的值增加到x+2kπ時(shí),函數(shù)值重復(fù)出現(xiàn).,1.函數(shù)的周期性 (1)對(duì)于函數(shù)f(x),如果存在一個(gè) ,使得當(dāng)x取定義域內(nèi)的 時(shí),都有 ,那么函數(shù)f(x)就叫做周期函數(shù),非零常數(shù)T叫做這個(gè)函數(shù)的周期.,[預(yù)習(xí)導(dǎo)引],非零常數(shù)T,每一個(gè)值,f(x+T)=f(x),(2)如果在周期函數(shù)f(x)的所有周期中存在一個(gè)最小的正數(shù),那么這個(gè)最小正數(shù)就叫做f(x)的 .,最小正周期,2.正弦函數(shù)、余弦函數(shù)的周期性

3、由sin(x+2kπ)= ,cos(x+2kπ)= 知y=sin x與y=cos x都是 函數(shù),2kπ(k∈Z且k≠0)都是它們的周期,且它們的最小正周期都是 .,sin x,cos x,周期,2π,3.y=Asin(ωx+φ),y=Acos(ωx+φ)的周期 一般地,函數(shù)y=Asin(ωx+φ)及y=Acos(ωx+φ)(其中A,ω,φ為常數(shù),且A≠0,ω>0)的最小正周期T= .,例1 求下列函數(shù)的周期:,要點(diǎn)一 求正弦、余弦函數(shù)的周期,函數(shù)f(x)=sin z的最小正周期是2π, 就是說變量z只要且至少要增加到z+2π, 函數(shù)f(x)=sin z(z∈R)的值才能重復(fù)取得,

4、,(2)y=|sin 2x|(x∈R).,規(guī)律方法 (1)利用周期函數(shù)的定義求三角函數(shù)的周期,關(guān)鍵是抓住變量“x”增加到“x+T”時(shí)函數(shù)值重復(fù)出現(xiàn),則可得T是函數(shù)的一個(gè)周期.,跟蹤演練1 求下列函數(shù)的最小正周期:,解 定義法:令u=2x,則cos 2x=cos u是周期函數(shù),且最小正周期為2π. ∴cos(u+2π)=cos u,則cos(2x+2π)=cos 2x, 即cos[2(x+π)]=cos 2x.∴cos 2x的最小正周期為π.,要點(diǎn)二 正弦、余弦函數(shù)周期性的應(yīng)用,解 ∵f(x)的最小正周期是π,,∵f(x)是R上的偶函數(shù),,規(guī)律方法 解決此類問題關(guān)鍵是運(yùn)用函數(shù)的周期性和奇偶性,把

5、自變量x的值轉(zhuǎn)化到可求值區(qū)間內(nèi).,1,2,3,4,C,1,2,3,4,D,1,2,3,4,1,2,3,4,答案 B,4.已知f(x)是R上的奇函數(shù),且f(1)=2,f(x+3)=f(x),則f(8)=________. 解析 ∵f(x+3)=f(x), ∴f(x)是周期函數(shù),3就是它的一個(gè)周期,且f(-x)=-f(x). ∴f(8)=f(2+23)=f(2)=f(-1+3) =f(-1)=-f(1)=-2.,1,2,3,4,-2,求函數(shù)的最小正周期的常用方法: (1)定義法,即觀察出周期,再用定義來驗(yàn)證;也可由函數(shù)所具有的某些性質(zhì)推出使f(x+T)=f(x)成立的T. (2)圖象法,即作出y=f(x)的圖象,觀察圖象可求出T.如y=|sin x|.,課堂小結(jié),

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!