電磁場與電磁波 習(xí)題答案.doc
《電磁場與電磁波 習(xí)題答案.doc》由會員分享,可在線閱讀,更多相關(guān)《電磁場與電磁波 習(xí)題答案.doc(29頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、第九章 導(dǎo)行電磁波 重點(diǎn)和難點(diǎn) 本章應(yīng)以矩形波導(dǎo)為重點(diǎn),介紹導(dǎo)波系統(tǒng)的傳輸特性。介紹幾種常用導(dǎo)波系統(tǒng)時,應(yīng)著重介紹傳輸?shù)牟ㄐ徒Y(jié)構(gòu)和使用的頻率范圍。若有實(shí)物,可帶入教室向?qū)W生展示。 介紹矩形波導(dǎo)中的電磁波時,應(yīng)著重講解求解方法、傳播特性以及波導(dǎo)中的電磁場分布。傳播特性中的多模特性、截止波長及波導(dǎo)波長等概念應(yīng)為重點(diǎn)。 通過矩形波導(dǎo)中的TE10波的分析進(jìn)一步說明波導(dǎo)中的場分布,波導(dǎo)壁上的電流分布,波導(dǎo)波長和工作波長之間的關(guān)系,以及波導(dǎo)中的相速和能速之間的關(guān)系。關(guān)于同軸線,著重介紹如何設(shè)計尺寸,抑制高次模。對于諧振腔,著重介紹多諧性及其應(yīng)用。 群速及圓波導(dǎo)內(nèi)容可以根據(jù)學(xué)時適當(dāng)從簡
2、。 重要公式 直角坐標(biāo)系中橫向場的縱向場表示: 式中,。 矩形波導(dǎo)中的TM波 矩形波導(dǎo)中的TE波 矩形波導(dǎo)中電磁波的傳播特性: 截止傳播常數(shù): 截止頻率: 截止波長: 矩形波導(dǎo)的尺寸: ; 相速: 波導(dǎo)波長: TM波的波阻抗: TE波的波阻抗: 矩形波導(dǎo)中的TE10波: 場方程: 截止波長: 相速: 波導(dǎo)波長: 能速: 群速: 色散媒質(zhì)中窄帶信號的群速: 矩形波導(dǎo)中的群速: 圓柱坐標(biāo)系中橫向場的縱向場表示:
3、 圓波導(dǎo)中的TM波: 圓波導(dǎo)中的TM波: 圓波導(dǎo)中電磁波的傳播特性: TM波的截止傳播常數(shù): TE波的截止傳播常數(shù): 圓波導(dǎo)的尺寸: 矩形波導(dǎo)的最大傳輸功率: 諧振腔: 矩形諧振腔的諧振波長: 矩形諧振腔的諧振頻率: 同軸線的尺寸: 題 解 9-1 推導(dǎo)式(9-1-4)。 解 已知在理想介質(zhì)中,無源區(qū)內(nèi)的麥克斯韋旋度方程為 , 令 , 則 將上式代入旋度方程并考慮到,可得 整理上述
4、方程,即可獲得式(9-1-4)。 9-2 推導(dǎo)式(9-2-17)。 解 對于波,。應(yīng)用分離變量法,令 由于滿足標(biāo)量亥姆霍茲方程,得 此式要成立,左端每項(xiàng)必須等于常數(shù),令 ; 顯然,。由上兩式可得原式通解為 根據(jù)橫向場與縱向場的關(guān)系式可得 因?yàn)楣鼙谔庪妶龅那邢蚍至繎?yīng)為零,那么,TE波應(yīng)該滿足下述邊界條件: ; 將邊界條件代入上兩式,得 故的通解為 其余各分量分別為 9-3 試證波導(dǎo)中的工作波長、波導(dǎo)波長與截止波長之間滿足下列關(guān)系 解 已知波導(dǎo)中電磁波的波長為
5、 則 即 9-4 已知空氣填充的矩形波導(dǎo)尺寸為,若工作頻率,給出可能傳輸?shù)哪J?。若填充介質(zhì)以后,傳輸模式有無變化?為什么? 解 當(dāng)內(nèi)部為空氣時,工作波長為,則 截止波長為 那么,能夠傳輸?shù)碾姶挪úㄩL應(yīng)滿足,若令,則k應(yīng)滿足。滿足此不等式的m,n數(shù)值列表如下: 0.25 1 2.25 4 1 1.25 2 3.25 4 4.25 由此可見,能夠傳輸?shù)哪J綖? 填充介質(zhì)以后,已知介質(zhì)中的波長為,可見工作波長縮短,傳輸模式增多,因此除了上述傳輸模式外,還可能傳輸其它高次模式。
6、9-5 已知矩形波導(dǎo)的尺寸為,若在區(qū)域中填充相對介電常數(shù)為的理想介質(zhì),在區(qū)域中為真空。當(dāng)TE10波自真空向介質(zhì)表面投射時,試求邊界上的反射波與透射波。 解 已知波導(dǎo)中沿軸傳輸?shù)牟ǖ碾妶鰪?qiáng)度為 那么,反射波和透射波的電場強(qiáng)度可分別表示為 ; 式中 ; 考慮到邊界上電場強(qiáng)度與磁場強(qiáng)度的切向分量必須連續(xù)的邊界條件,因而在處,獲知 根據(jù)波阻抗公式,獲知z < 0和z > 0區(qū)域中的波阻抗分別為 將場強(qiáng)公式代入,得 ,; , 根據(jù)上述邊界條件,得 那么,處的反射系數(shù)及透射系數(shù)分別為 ; 反射波與透射波的電場強(qiáng)度分別為 ; 根據(jù),可得反射波的磁場強(qiáng)度為
7、 根據(jù),可得透射波的磁場強(qiáng)度 9-6 試證波導(dǎo)中時均電能密度等于時均磁能密度,再根據(jù)能速定義,導(dǎo)出式(9-4-9)。 解 在波導(dǎo)中任取一段,其內(nèi)復(fù)能量定理式(7-11-14)成立??紤]到波導(dǎo)為理想導(dǎo)電體,內(nèi)部為真空,因此內(nèi)部沒有能量損耗。因此式(7-11-14)變?yōu)? 因?yàn)榱鬟M(jìn)左端面的能量應(yīng)該等于流出右端面的能量,故上式左端面積分為零,因而右端體積分為零。但是右端被積函數(shù)代表能量,只可能大于或等于零,因此獲知 已知能速的定義為,對于TE波,波導(dǎo)中平均能量密度為 波導(dǎo)中能流密度平均值僅與場強(qiáng)的橫向分量有關(guān)。對于TE波,能流密度的平均值為 波導(dǎo)中
8、電場和磁場的橫向分量關(guān)系為 將上述結(jié)果代入,求得TE波的能速為 同理對于TM波也可或獲得同樣結(jié)果。 9-7 試證波導(dǎo)中相速與群速的關(guān)系為 解 根據(jù)群速的定義,對于波導(dǎo),。又知波導(dǎo)的相位常數(shù)與相速的關(guān)系為 ,則 根據(jù)波導(dǎo)波長與相位常數(shù)的關(guān)系,得 則 9-8 推導(dǎo)式(9-6-3) 解 將麥克斯韋旋度方程,在圓柱坐標(biāo)系中展開,得 將代入上式,并考慮到,得 ;; ;; 上式整理后,即可求得橫向分量的表示式為 其中 9-9 推導(dǎo)式(9-6-18) 解 對于TE波, 建立圓柱坐標(biāo)系,滿足的亥姆
9、霍茲方程為 令,代入上式,得 令方程兩邊等于,獲得下述兩個常微分方程: 其中的通解為 由于隨角度的變化周期為2p,因此,必須為整數(shù)。即 式中m = 1,2,3??紤]到圓波導(dǎo)具有旋轉(zhuǎn)對稱性,的坐標(biāo)軸可以任意確定,總可適當(dāng)選擇的坐標(biāo)軸,使上式中的第一項(xiàng)或第二項(xiàng)消失,因此,上式可表示為 的通解為 考慮到圓波導(dǎo)中心處的場應(yīng)為有限,但時,,故常數(shù),即。因此的通解為 那么,根據(jù)圓波導(dǎo)的橫向分量的縱向場分量表示式,即可求得各個分量的表示式。 9-10 已知空氣填充的圓波導(dǎo)直徑,若工作頻率,給出可能傳輸?shù)哪J?,若填充相對介質(zhì)常數(shù)的介質(zhì)以
10、后,再求可能傳輸?shù)哪J健? 解 當(dāng)圓波導(dǎo)內(nèi)為空氣時,工作波長為 已知TM波的截止波長為,因此能夠傳輸?shù)哪J綄?yīng)的第一類柱貝塞爾的根Pmn必須滿足下列不等式 由教材表9-6-1可見,滿足上述條件的只有P01因此只有波存在。 TE波的截止波長為,那么能夠傳輸?shù)哪J綄?yīng)的第一類柱貝塞爾的導(dǎo)數(shù)根必須滿足下列不等式 由教材表9-6-2可見,滿足上述條件的只有和,因此只有和波可以傳輸。 填充介電常數(shù)為理想介質(zhì)后,工作波長為,則能夠傳輸?shù)腡M模式對應(yīng)的第一類柱貝塞爾的根Pmn必須滿足下列不等式 由教材表9-6-1可見,滿足上述條件的模式為。 能夠傳輸?shù)腡E模式對應(yīng)的第一類柱貝
11、塞爾的導(dǎo)數(shù)根必須滿足下列不等式 那么,由原書表9-6-2可見,滿足上述條件的模式為。 9-11 當(dāng)比值為何值時,工作于主模的矩形波導(dǎo)中波導(dǎo)壁產(chǎn)生的損耗最小?(指獲得最小衰減常數(shù))。 解 當(dāng)矩形波導(dǎo)傳播波時,其衰減常數(shù)為 式中A僅與波導(dǎo)的參數(shù)有關(guān)。令,則求k的最小值問題轉(zhuǎn)化為求函數(shù)的最小值問題。由,得,解此方程,得 若取,則。由于,則。故 不合理。應(yīng)取 即 得 9-12 已知空氣填充的銅質(zhì)矩形波導(dǎo)尺寸為,工作于主模,工作頻率。試求:① 截止頻率、波導(dǎo)波長及衰減常數(shù);② 當(dāng)場強(qiáng)振幅衰減一半時的距離。 解 當(dāng)工作于主模波時,則截止頻率為
12、 波導(dǎo)波長為 因矩形波導(dǎo)為空氣填充,故僅需考慮波導(dǎo)壁產(chǎn)生的衰減,則衰減常數(shù)為 對于銅制波導(dǎo),波導(dǎo)壁表面電阻,則 設(shè)場強(qiáng)衰減一半時的距離為d,由,求得 9-13 已知空氣填充的銅質(zhì)圓波導(dǎo)直徑,工作于主模,工作頻率,試求,① 截止頻率、波導(dǎo)波長及衰減常數(shù);② 當(dāng)場強(qiáng)衰減一半的距離。 解 當(dāng)圓波導(dǎo)工作于主模波時,則截止頻率為 波導(dǎo)波長為 由于波導(dǎo)是空氣填充,因此只需考慮波導(dǎo)壁的損耗。根據(jù)衰減常數(shù)的定義,求得 其中波導(dǎo)壁表面電阻 波數(shù) 傳播常數(shù) 截止傳播常數(shù),那么,求得 設(shè)場強(qiáng)衰減一半時的距離為,由,求得 d = 163(m) 9-
13、14 已知空氣填充的矩形波導(dǎo)尺寸為,工作頻率。若空氣的擊穿場強(qiáng)為,試求該波導(dǎo)能夠傳輸?shù)淖畲蠊β省? 解 由于波導(dǎo)是空氣填充,故工作波長為 已知,為了滿足,該波導(dǎo)只能傳播波,其截止波長為 此時,矩形波導(dǎo)能夠傳輸?shù)淖畲蠊β蕿?,式中為波?dǎo)中空氣的擊穿強(qiáng)度,。 又知該矩形波導(dǎo)的波阻抗 求得該矩形波導(dǎo)能夠傳輸?shù)淖畲蠊β蕿? 9-15 若波導(dǎo)中填充介質(zhì)的參數(shù)為,試證由于填充介質(zhì)產(chǎn)生的衰減常數(shù)為 解 當(dāng)波導(dǎo)中填充的媒質(zhì)具有一定的電導(dǎo)率時,可以引入等效介電常數(shù),即令。因此,波導(dǎo)中的波數(shù)。 已知 , 那么 考慮到通常s << we,上式可簡化為
14、 令傳播常數(shù),那么,衰減常數(shù)為 9-16 已知空氣填充的銅質(zhì)矩形波導(dǎo)尺寸為,工作于主模,工作頻率。若該波導(dǎo)傳輸功率為,試求:① 波導(dǎo)壁產(chǎn)生的衰減常數(shù);② 波導(dǎo)中電場及磁場強(qiáng)度的最大值;③ 波導(dǎo)壁上電流密度的最大值;④ 每米長度內(nèi)的損耗功率。 解 ①已知工作于主模的空氣填充的矩形波導(dǎo),波導(dǎo)壁產(chǎn)生的衰減常數(shù)為 式中波導(dǎo)壁的表面電阻,工作波長,那么衰減常數(shù)為 ②設(shè)波導(dǎo)中的復(fù)能流密度為,橫截面為,則波導(dǎo)中的傳輸功率為 由于波導(dǎo)中填充理想介質(zhì),波阻抗為實(shí)數(shù),橫向電場與橫向磁場的相位相同,則 。 已知矩形波導(dǎo)中波強(qiáng)度的橫向分量為 考慮到,則由上述場強(qiáng)公式求得
15、 因 則 那么,當(dāng)傳輸功率P = 1000(W)時,則 由此求得波導(dǎo)中電場及磁場強(qiáng)度的最大值分別為 ③根據(jù)波導(dǎo)壁上磁場分量,即可求得波導(dǎo)壁上的表面電流。窄壁上表面電流為 其最大值為 寬壁上表面電流為 因此,寬壁上表面電流的振幅為 令,則 由,獲知,,為極點(diǎn)。又因 計算表明,當(dāng),; 當(dāng),; 當(dāng),。 由此可見,當(dāng)時,即寬邊中部取得最大值,求得表面電流最大值為 ④因,損耗功率,那么,單位長度內(nèi)的損耗功率為 9-17 試證式(9-8-8)。 解 已知表面電流,式中為導(dǎo)體表面的外法線方向上
16、的單位矢量。那么,表面電流的大小為,式中表示表面磁場的切向分量。因此,損耗功率為 此面積分應(yīng)沿諧振腔的6個內(nèi)壁求積,即 已知式中 則 代入后,求得 9-18 推導(dǎo)式(9-8-10)及式(9-8-12)。 解 當(dāng)圓波導(dǎo)傳播TM波時,則 若諧振腔的長度為l,則。那么, 又知,則諧振頻率為 同理,對于TE波的圓柱諧振腔,可以證明諧振頻率為 9-19 已知矩形波導(dǎo)諧振腔的尺寸為,試求發(fā)生諧振的4個最低模式及其諧振頻率。 解 已知矩形波導(dǎo)諧振腔的諧振頻率為 當(dāng)腔內(nèi)為真空時,根據(jù)題中給定的尺寸,則諧
17、振頻率為 那么,發(fā)生諧振的4個最低模式為TM110,TE101,TE011,TE111和TM111,對應(yīng)的諧振頻率分別為 ; ; 9-20 已知空氣填充的圓波導(dǎo)半徑為10mm,若用該波導(dǎo)形成諧振腔,試求為了使30GHz電磁波諧振于TM021模式所需的波導(dǎo)長度。 解 已知圓波導(dǎo)諧振腔工作于TM波時,其諧振頻率為 若要求,令腔長為半波導(dǎo)波長,即l = 1,那么,諧振腔的最短長度d由下式 求得 d = 10.5(mm) 9-21 已知空氣填充的矩形波諧振腔尺寸為,諧振模式為TE102,在保證尺寸不變條件下,如何使諧振模式變?yōu)門E103。 解 已知
18、矩形諧振腔的諧振頻率為 由此可見,改變腔內(nèi)介質(zhì)的介電常數(shù)即可變更諧振腔的諧振頻率。當(dāng)腔內(nèi)充滿空氣時,諧振于模式的諧振頻率為 若腔內(nèi)充滿介質(zhì),諧振于模式的諧振頻率為 由f102 = f103,求得填充介質(zhì)的相對介電常數(shù) 。 9-22 試證波導(dǎo)諧振腔中電場儲能最大值等于磁場儲能最大值。 解 波導(dǎo)諧振腔內(nèi)的電磁場應(yīng)該滿足無源區(qū)中的麥克斯韋方程,即 設(shè)諧振腔的體積為V,則電場最大儲能為,磁場最大儲能為,那么 因 故 利用矢量恒等式,則式中第一項(xiàng)積分的被積函數(shù)可改寫為 由于腔壁上電場強(qiáng)度的切向分量為零,即 故面積分 ,則
19、 考慮到 則 9-23 已知空氣填充的黃銅矩形諧振腔的尺寸為,諧振模式為TE111,黃銅的電導(dǎo)率,試求該諧振腔的品質(zhì)因素。 解 矩形波導(dǎo)中波的電場與磁場的各分量為 則在諧振模式下的場分量為 其電場最大值為 ;電場儲能密度的時間最大值為,則整個腔內(nèi)的電場儲能的時間最大值為 已知表面電流,式中為導(dǎo)體表面的外法線方向上的單位矢量。那么,表面電流的大小為,式中表示表面磁場的切向分量。因此,損耗功率為 此面積分應(yīng)沿諧振腔的6個內(nèi)壁求積,即 其中 則損耗功率為 諧振腔的品質(zhì)因數(shù)為 因 ,,,(m),求得品質(zhì)因數(shù) 。 9-24 試證由理想導(dǎo)電體制成的、介質(zhì)填充的波導(dǎo)諧振腔品質(zhì)因素,式中及分別為填充介質(zhì)的介電常數(shù)及電導(dǎo)率。 解 由于諧振腔是理想導(dǎo)體,故腔壁的損耗可以不計,僅需考慮填充介質(zhì)的損耗。已知品質(zhì)因數(shù)為 式中 又 求得 29
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2023年六年級數(shù)學(xué)下冊6整理和復(fù)習(xí)2圖形與幾何第7課時圖形的位置練習(xí)課件新人教版
- 2023年六年級數(shù)學(xué)下冊6整理和復(fù)習(xí)2圖形與幾何第1課時圖形的認(rèn)識與測量1平面圖形的認(rèn)識練習(xí)課件新人教版
- 2023年六年級數(shù)學(xué)下冊6整理和復(fù)習(xí)1數(shù)與代數(shù)第10課時比和比例2作業(yè)課件新人教版
- 2023年六年級數(shù)學(xué)下冊4比例1比例的意義和基本性質(zhì)第3課時解比例練習(xí)課件新人教版
- 2023年六年級數(shù)學(xué)下冊3圓柱與圓錐1圓柱第7課時圓柱的體積3作業(yè)課件新人教版
- 2023年六年級數(shù)學(xué)下冊3圓柱與圓錐1圓柱第1節(jié)圓柱的認(rèn)識作業(yè)課件新人教版
- 2023年六年級數(shù)學(xué)下冊2百分?jǐn)?shù)(二)第1節(jié)折扣和成數(shù)作業(yè)課件新人教版
- 2023年六年級數(shù)學(xué)下冊1負(fù)數(shù)第1課時負(fù)數(shù)的初步認(rèn)識作業(yè)課件新人教版
- 2023年六年級數(shù)學(xué)上冊期末復(fù)習(xí)考前模擬期末模擬訓(xùn)練二作業(yè)課件蘇教版
- 2023年六年級數(shù)學(xué)上冊期末豐收園作業(yè)課件蘇教版
- 2023年六年級數(shù)學(xué)上冊易錯清單十二課件新人教版
- 標(biāo)準(zhǔn)工時講義
- 2021年一年級語文上冊第六單元知識要點(diǎn)習(xí)題課件新人教版
- 2022春一年級語文下冊課文5識字測評習(xí)題課件新人教版
- 2023年六年級數(shù)學(xué)下冊6整理和復(fù)習(xí)4數(shù)學(xué)思考第1課時數(shù)學(xué)思考1練習(xí)課件新人教版