購買設(shè)計請充值后下載,,資源目錄下的文件所見即所得,都可以點開預(yù)覽,,資料完整,充值下載可得到資源目錄里的所有文件。。。【注】:dwg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無水印,可編輯。。。具體請見文件預(yù)覽,有不明白之處,可咨詢QQ:12401814
金屬切削機床課程設(shè)計 CA6140型車床
一、設(shè)計目的
通過機床主運動機械變速傳動系統(tǒng)得結(jié)構(gòu)設(shè)計,在擬定傳動和變速的結(jié)構(gòu)方案過程中,得到設(shè)計構(gòu)思、方案分析、結(jié)構(gòu)工藝性、機械制圖、零件計算、編寫技術(shù)文件和查閱技術(shù)資料等方面的綜合訓(xùn)練,樹立正確的設(shè)計思想,掌握基本的設(shè)計方法,并具有初步的結(jié)構(gòu)分析、結(jié)構(gòu)設(shè)計和計算能力。
二、設(shè)計步驟
1.運動設(shè)計
1.1已知條件
[1]確定轉(zhuǎn)速范圍:主軸最小轉(zhuǎn)速。
[2]確定公比:
[3]轉(zhuǎn)速級數(shù):
1.2結(jié)構(gòu)分析式
⑴ ⑵ [3]
從電動機到主軸主要為降速傳動,若使傳動副較多的傳動組放在較接近電動機處可使小尺寸零件多些,大尺寸零件少些,節(jié)省材料,也就是滿足傳動副前多后少的原則,因此取方案。在降速傳動中,防止齒輪直徑過大而使徑向尺寸常限制最小傳動比 ;在升速時為防止產(chǎn)生過大的噪音和震動常限制最大轉(zhuǎn)速比。在主傳動鏈任一傳動組的最大變速范圍。在設(shè)計時必須保證中間傳動軸的變速范圍最小,
根據(jù)中間傳動軸變速范圍小的原則選擇結(jié)構(gòu)網(wǎng)。從而確定結(jié)構(gòu)網(wǎng)如下:
檢查傳動組的變速范圍時,只檢查最后一個擴大組:
其中
,,
所以 ,合適。
1.3 繪制轉(zhuǎn)速圖
⑴選擇電動機
一般車床若無特殊要求,多采用Y系列封閉式三相異步電動機,根據(jù)原則條件選擇Y-132M-4型Y系列籠式三相異步電動機。
⑵分配總降速傳動比
總降速傳動比
又電動機轉(zhuǎn)速
不符合轉(zhuǎn)速數(shù)列標(biāo)準(zhǔn),因而增加一定比傳動副。
[3]確定傳動軸軸數(shù)
傳動軸軸數(shù) = 變速組數(shù) + 定比傳動副數(shù) + 1 = 3 + 1 + 1 = 5。
⑷確定各級轉(zhuǎn)速并繪制轉(zhuǎn)速圖
由
z = 12確定各級轉(zhuǎn)速:
1400、1000、710、500、355、250、180、125、90、63、45、31.5r/min。
在五根軸中,除去電動機軸,其余四軸按傳動順序依次設(shè)為Ⅰ、Ⅱ、Ⅲ、Ⅳ。Ⅰ與Ⅱ、Ⅱ與Ⅲ、Ⅲ與Ⅳ軸之間的傳動組分別設(shè)為a、b、c。現(xiàn)由Ⅳ(主軸)開始,確定Ⅰ、Ⅱ、Ⅲ軸的轉(zhuǎn)速:
① 先來確定Ⅲ軸的轉(zhuǎn)速
傳動組c 的變速范圍為
,結(jié)合結(jié)構(gòu)式,
Ⅲ軸的轉(zhuǎn)速只有一和可能:
125、180、250、355、500、710r/min。
② 確定軸Ⅱ的轉(zhuǎn)速
傳動組b的級比指數(shù)為3,希望中間軸轉(zhuǎn)速較小,因而為了避免升速,又不致傳動比太小,可取
,
軸Ⅱ的轉(zhuǎn)速確定為:355、500、710r/min。
③確定軸Ⅰ的轉(zhuǎn)速
對于軸Ⅰ,其級比指數(shù)為1,可取
,,
確定軸Ⅰ轉(zhuǎn)速為710r/min。
由此也可確定加在電動機與主軸之間的定傳動比
。下面畫出轉(zhuǎn)速圖(電動機轉(zhuǎn)速與主軸最高轉(zhuǎn)速相近)。
[5]確定各變速組傳動副齒數(shù)
①傳動組a:
查表8-1, ,,
時:……57、60、63、66、69、72、75、78……
時:……58、60、63、65、67、68、70、72、73、77……
時:……58、60、62、64、66、68、70、72、74、76……
可取72,于是可得軸Ⅰ齒輪齒數(shù)分別為:24、30、36。
于是,,
可得軸Ⅱ上的三聯(lián)齒輪齒數(shù)分別為:48、42、36。
②傳動組b:
查表8-1, ,
時:……69、72、73、76、77、80、81、84、87……
時:……70、72、74、76、78、80、82、84、86……
可取 84,于是可得軸Ⅱ上兩聯(lián)齒輪的齒數(shù)分別為:22、42。
于是 ,,得軸Ⅲ上兩齒輪的齒數(shù)分別為:62、42。
③傳動組c:
查表8-1,,
時:……84、85、89、90、94、95……
時: ……72、75、78、81、84、87、89、90……
可取 90.
為降速傳動,取軸Ⅲ齒輪齒數(shù)為18;
為升速傳動,取軸Ⅳ齒輪齒數(shù)為30。
于是得,
得軸Ⅲ兩聯(lián)動齒輪的齒數(shù)分別為18,60;
得軸Ⅳ兩齒輪齒數(shù)分別為72,30。
1.4 繪制傳動系統(tǒng)圖
根據(jù)軸數(shù),齒輪副,電動機等已知條件可有如下系統(tǒng)圖:
2.動力設(shè)計
2.1 確定各軸轉(zhuǎn)速
⑴確定主軸計算轉(zhuǎn)速:主軸的計算轉(zhuǎn)速為
圖表 1
⑵各傳動軸的計算轉(zhuǎn)速:
軸Ⅲ可從主軸90r/min按72/18的傳動副找上去,軸Ⅲ的計算轉(zhuǎn)速
125r/min;軸Ⅱ的計算轉(zhuǎn)速為355r/min;軸Ⅰ的計算轉(zhuǎn)速為710r/min。
[3]各齒輪的計算轉(zhuǎn)速
傳動組c中,18/72只需計算z = 18 的齒輪,計算轉(zhuǎn)速為355r/min;60/30只需計算z = 30的齒輪,計算轉(zhuǎn)速為250r/min;傳動組b計算z = 22的齒輪,計算轉(zhuǎn)速為355r/min;傳動組a應(yīng)計算z = 24的齒輪,計算轉(zhuǎn)速為710r/min。
[4]核算主軸轉(zhuǎn)速誤差
所以合適。
2.2 帶傳動設(shè)計
電動機轉(zhuǎn)速n=1440r/min,傳遞功率P=7.5KW,傳動比i=2.03,兩班制,
一天運轉(zhuǎn)16.1小時,工作年數(shù)10年。
⑴確定計算功率 取1.1,則
⑵選取V帶型
根據(jù)小帶輪的轉(zhuǎn)速和計算功率,選B型帶。
⑶確定帶輪直徑和驗算帶速
查表小帶輪基準(zhǔn)直徑
,
驗算帶速成
其中 -小帶輪轉(zhuǎn)速,r/min;
-小帶輪直徑,mm;
,合適。
[4]確定帶傳動的中心距和帶的基準(zhǔn)長度
設(shè)中心距為,則
0.55()a2()
于是 208.45a758,初取中心距為400mm。
帶長
查表取相近的基準(zhǔn)長度,。
帶傳動實際中心距
[5]驗算小帶輪的包角
一般小帶輪的包角不應(yīng)小于。
。合適。
[6]確定帶的根數(shù)
其中: -時傳遞功率的增量;
-按小輪包角,查得的包角系數(shù);
-長度系數(shù);
為避免V型帶工作時各根帶受力嚴(yán)重不均勻,限制根數(shù)不大于10。
[7]計算帶的張緊力
其中: -帶的傳動功率,KW;
v-帶速,m/s;
q-每米帶的質(zhì)量,kg/m;取q=0.17kg/m。
v = 1440r/min = 9.42m/s。
[8]計算作用在軸上的壓軸力
2.3 各傳動組齒輪模數(shù)的確定和校核
⑴模數(shù)的確定:
a傳動組:分別計算各齒輪模數(shù)
先計算24齒齒輪的模數(shù):
其中: -公比 ; = 2;
-電動機功率; = 7.5KW;
-齒寬系數(shù);
-齒輪傳動許允應(yīng)力;
-計算齒輪計算轉(zhuǎn)速。
, 取= 600MPa,安全系數(shù)S = 1。
由應(yīng)力循環(huán)次數(shù)選取
,取S=1,。
取m = 4mm。
按齒數(shù)30的計算,,可取m = 4mm;
按齒數(shù)36的計算,, 可取m = 4mm。
于是傳動組a的齒輪模數(shù)取m = 4mm,b = 32mm。
軸Ⅰ上齒輪的直徑:
。
軸Ⅱ上三聯(lián)齒輪的直徑分別為:
b傳動組:
確定軸Ⅱ上另兩聯(lián)齒輪的模數(shù)。
按22齒數(shù)的齒輪計算:
可得m = 4.8mm;
取m = 5mm。
按42齒數(shù)的齒輪計算:
可得m = 3.55mm;
于是軸Ⅱ兩聯(lián)齒輪的模數(shù)統(tǒng)一取為m = 5mm。
于是軸Ⅱ兩聯(lián)齒輪的直徑分別為:
軸Ⅲ上與軸Ⅱ兩聯(lián)齒輪嚙合的兩齒輪直徑分別為:
c傳動組:
取m = 5mm。
軸Ⅲ上兩聯(lián)動齒輪的直徑分別為:
軸四上兩齒輪的直徑分別為:
3. 齒輪強度校核:計算公式
3.1校核a傳動組齒輪
校核齒數(shù)為24的即可,確定各項參數(shù)
⑴ P=8.25KW,n=710r/min,
⑵確定動載系數(shù):
齒輪精度為7級,由《機械設(shè)計》查得使用系數(shù)
⑶
⑷確定齒向載荷分配系數(shù):取齒寬系數(shù)
非對稱
,查《機械設(shè)計》得
⑸確定齒間載荷分配系數(shù):
由《機械設(shè)計》查得
⑹確定動載系數(shù):
⑺查表 10-5
⑻計算彎曲疲勞許用應(yīng)力
由圖查得小齒輪的彎曲疲勞強度極限。
圖10-18查得 ,S = 1.3
,
故合適。
3.2 校核b傳動組齒輪
校核齒數(shù)為22的即可,確定各項參數(shù)
⑴ P=8.25KW,n=355r/min,
⑵確定動載系數(shù):
齒輪精度為7級,由《機械設(shè)計》查得使用系數(shù)
⑶
⑷確定齒向載荷分配系數(shù):取齒寬系數(shù)
非對稱
,查《機械設(shè)計》得
⑸確定齒間載荷分配系數(shù):
由《機械設(shè)計》查得
⑹確定動載系數(shù):
⑺查表 10-5
⑻計算彎曲疲勞許用應(yīng)力
由圖查得小齒輪的彎曲疲勞強度極限。
圖10-18查得 ,S = 1.3
,
故合適。
3.3校核c傳動組齒輪
校核齒數(shù)為18的即可,確定各項參數(shù)
⑴ P=8.25KW,n=355r/min,
⑵確定動載系數(shù):
齒輪精度為7級,由《機械設(shè)計》查得使用系數(shù)
⑶
⑷確定齒向載荷分配系數(shù):取齒寬系數(shù)
非對稱
,查《機械設(shè)計》得
⑸確定齒間載荷分配系數(shù):
由《機械設(shè)計》查得
⑹確定動載系數(shù):
⑺查表 10-5
⑻計算彎曲疲勞許用應(yīng)力
由圖查得小齒輪的彎曲疲勞強度極限。
圖10-18查得 ,S = 1.3
,
故合適。
4. 主軸撓度的校核
4.1 確定各軸最小直徑
[1]Ⅰ軸的直徑:
[2]Ⅱ軸的直徑:
[3]Ⅲ軸的直徑:
[4]主軸的直徑:
4.2軸的校核
Ⅰ軸的校核:通過受力分析,在一軸的三對嚙合齒輪副中,中間的兩對齒輪對Ⅰ軸中點處的撓度影響最大,所以,選擇中間齒輪嚙合來進行校核
。
Ⅱ軸、Ⅲ軸的校核同上。
5. 主軸最佳跨距的確定
400mm車床,P=7.5KW.
5.1 選擇軸頸直徑,軸承型號和最佳跨距
前軸頸應(yīng)為75-100mm,初選=100mm,后軸頸
取,前軸承為NN3020K,后軸承為NN3016K,根據(jù)結(jié)構(gòu),定懸伸長度
5.2 求軸承剛度
考慮機械效率
主軸最大輸出轉(zhuǎn)距
床身上最大加工直徑約為最大回轉(zhuǎn)直徑的60%,取50%即200,故半徑為0.1.
切削力
背向力
故總的作用力
次力作用于頂在頂尖間的工件上主軸尾架各承受一半,
故主軸軸端受力為
先假設(shè)
前后支撐分別為
根據(jù)
。
6. 各傳動軸支承處軸承的選擇
主軸 前支承:NN3020K;中支承:N219E;后支承:NN3016K
Ⅰ軸 前支承:30207;后支承:30207
Ⅱ軸 前支承:30207;中支承:NN3009;后支承:30207
Ⅲ軸 前支承:30208;后支承:30208
7. 主軸剛度的校核
7.1 主軸圖:
7.2 計算跨距
前支承為雙列圓柱滾子軸承,后支承為雙列圓柱滾子軸承
當(dāng)量外徑
主軸剛度:由于
故根據(jù)式(10-8)
對于機床的剛度要求,取阻尼比
當(dāng)v=50m/min,s=0.1mm/r時,,
取
計算
可以看出,該機床主軸是合格的.
三、總結(jié)
金屬切削機床的課程設(shè)計任務(wù)完成了,雖然設(shè)計的過程比較繁瑣,而且剛開始還有些不知所措,但是在同學(xué)們的共同努力下,再加上老師的悉心指導(dǎo),我終于順利地完成了這次設(shè)計任務(wù)。本次設(shè)計鞏固和深化了課堂理論教學(xué)的內(nèi)容,鍛煉和培養(yǎng)了我綜合運用所學(xué)過的知識和理論的能力,是我獨立分析、解決問題的能力得到了強化.
四、參考文獻
[1]工程學(xué)院機械制造教研室 主編.金屬切削機床指導(dǎo)書.
[2]濮良貴 紀(jì)名剛主編.機械設(shè)計(第七版).北京:高等教育出版社,2001年6月
[3]毛謙德 李振清主編.《袖珍機械設(shè)計師手冊》第二版.機械工業(yè)出版社,2002年5月
[4]《減速器實用技術(shù)手冊》編輯委員會編.減速器實用技術(shù)手冊.北京:機械工業(yè)出版社,1992年
[5]戴曙 主編.金屬切削機床.北京:機械工業(yè)出版社,2005年1月
[6]《機床設(shè)計手冊》編寫組 主編.機床設(shè)計手冊.北京:機械工業(yè)出版社,1980年8月
[7]華東紡織工學(xué)院 哈爾濱工業(yè)大學(xué) 天津大學(xué)主編.機床設(shè)計圖冊.上海:上??茖W(xué)技術(shù)出版社,1979年6月
(以上看不見的 鼠標(biāo)右鍵—題注就可以了!)
- 18 -
金屬切削機床課程設(shè)計說明書
目錄
一、設(shè)計目的 -1-
二、設(shè)計步驟 -1-
1.運動設(shè)計 -1-
1.1已知條件 -1-
1.2結(jié)構(gòu)分析式 -1-
1.3 繪制轉(zhuǎn)速圖 -2-
1.4 繪制傳動系統(tǒng)圖 -5-
2.動力設(shè)計 -5-
2.1 確定各軸轉(zhuǎn)速 -5-
2.2 帶傳動設(shè)計 -6-
2.3 各傳動組齒輪模數(shù)的確定和校核 -7-
3. 齒輪強度校核 -9-
3.1校核a傳動組齒輪 -9-
3.2 校核b傳動組齒輪 -10-
3.3校核c傳動組齒輪 -11-
4. 主軸撓度的校核 -13-
4.1 確定各軸最小直徑 -13-
4.2軸的校核 -13-
5. 主軸最佳跨距的確定 -14-
5.1 選擇軸頸直徑,軸承型號和最佳跨距 -14-
5.2 求軸承剛度 -14-
6. 各傳動軸支承處軸承的選擇 -15-
7. 主軸剛度的校核 -15-
7.1 主軸圖 -15-
7.2 計算跨距 -16-
三、總結(jié) -17-
四、參考文獻 -18-
Machine Design
With the scientific and technological progress and social changes in demand, machine design theory and technology are also constantly development. Computer technology and the rapid progress of technology, machine design methods for the development of a strong technical support. Computer-aided design (CAD) and computer-aided engineering (Computer Aided Engineering, Machine Tools initials CAE0 in the various stages of design has been applied, the experience has changed the traditional design methods, machine design from the traditional design of the computer-aided design, Qualitative to quantitative design design, static and linear and nonlinear analysis to dynamic analysis, from feasibility to design the best design of the transition.
NC technology development and applications, the transmission makes machine tools and structure has undergone major changes. Servo drive system can easily achieve a single machine and multi-axis movement linked to possible to omit the heavy machinery complex transmission system, structure and layout to produce great changes.
With the development of the production, the needs of the community is changing. In the mechanical manufacturing industry, a variety of species, small batch production of the increasing demand, resulting in a corresponding to the FMS (FMS) and other advanced manufacturing systems. FMS NC machine tools is the core equipment. Pre-FMS, can be said to be "machine-based system" that, according to the characteristics of the existing machine to a FMS. However, traditional machine tools (including numerical control machine tools) does not take into account when designing it in the application of FMS, in the functional constraints on the development of the FMS. FMS the development of machine has set new requirements for machine tools designed to "system-based machine design development" direction, that is, in machine design to consider how to better adapt to FMS, and other advanced manufacturing systems requirements, for example, Time and space with flexible, and the proximity to the logistics and so on, which means the design of machine tools has made new demands. Machine design is based on the design of the type set. Universal machine used serialized design. Series of products are innovative design type, the other is a variant design type. Some machines, such as the composition of a combination of machine design type.
In the type of innovative design, machine tools overall programme (including motor function and structure of the programme layout of the programme) may be the selection of the design (also known as the trial design) or a 10% design (also known as the analytical design). The former is used analog analysis, a method of reasoning programme, is the innovative design of the method used in general while the latter used as a method of generating the analytical programme, innovation ability, it is still studying development.
Machine Design steps
Machine tools and demands of different types, design steps are also different. In accordance with the new principles for processing the innovative design of the machine should be the steps; into a series of machine tool products should be designed serialization of the steps; higher degree of universal machine products, such as machine tools should be modular design combination of the steps .
I.determine the structure principle
According to the preliminary design, the machine is designed to determine the structure of the main principles of the programme include:
(1) that uses the technology of the machine, including the processing of the material type, shape, quality and size range.
(2) productivity, including the processing of the types, quantities and the required productivity.
(3) performance requirements of the accuracy of processing (user orders design) or the accuracy of machine tools, stiffness, heat distortion, noise and other performance indicators.
(4) the main parameters that determine the processing machine room and the main parameters.
(5) drive machine-driven approach and a motor-driven hydraulic-driven approach. Motor-driven approach in general have driven motor, stepper motor drive and servo motor drive. Drive and the determination of not only the cost of the machine, will also directly affect the mode of transmission established.
(6) of the main principles of parts and components should meet the requirements and principles of the structure, and sometimes needed to draft the design, identification of key components of home-made or HS.
(7) costs and production cycle or whether orders for factory planning products, should determine the cost and production cycle indicators.
II. Design
Design of the contents
(1) motor function design including the identification of the number of machines required for movement, form (linear motion, the Rotary Movement), features (the main movement, feeding movement, other sports) and the order, the final draw of the machine function map.
(2) the basic parameters of the design parameters, including size, movement and dynamic parameters of the design parameters.
(3) transmission system design, including transmission, transmission and drive system schematic design plans.
(4) the overall layout of the structure including the distribution of motor function, the overall layout of the form and structure of the whole programme
Design plans.
(5) control, including control system design and control theory, control system design plans.
III.structural design
Design of the machine drive system to determine the structure of the major principles of the programme, design parts assembly, the main parts for analysis calculated or refine the design of hydraulic principles and the corresponding assembly of hydraulic components, electrical control system design schematics and the corresponding Installation of electrical wiring diagram, machine design and improve the hand and the contact size map.
IV. Process Design
Who all the self-made machine parts map, the preparation of standard parts, GM parts and pieces of home-made schedules, writing Design Manual, Manual, the designated machine test methods and standards, and other technical documentation.
V. Machine Tool Evaluation
On a machine designed by performance analysis and comprehensive evaluation. May be designed by computer modeling of the machine, get a prototype of the so-called math, also known as the virtual prototype. A virtual prototype of a machine designed by kinematic simulation, in the actual prototype test before they are made out a comprehensive assessment, can greatly reduce the risk of new product development, shorten the development cycle and improve the quality of development.
These steps can be repeated, that the design with satisfactory results achieved so far. In the design process, design and evaluation of repeated a design can improve the success rate.
VI.design type
Upon completion of the above steps, the physical prototype manufacture, test and comment. According to physical prototype comment on the results of the modified design, the final product design type.
On the deep processing of the technological requirements
Deep processing, is the top priority of this design. The so-called deep hole, the hole is that when processing the ratio of length and diameter of about 10 times, often on the accuracy and surface finish requirements and higher, the use of processing methods in general are more difficult to meet.
I. Deep processing issues that must be addressed:
1) poor tool rigidity slender and easy to cause the tool deflection and friction with the hole wall, and therefore the head knives are correctly oriented to ensure the introduction of sets; At the same time, bearing in accordance with the need for holders to reduce the deformation and vibration Arbor.
2) is not easy from cuttings, the use of feed grade or high-pressure cutting fluid through the
inner row and outer row chip from the tool structure.
3) tool cooling difficulties, access to high-pressure cutting fluid cooling of the tool fully.
II. Deep processing of type:
Combine the characteristics of deep-hole machining, deep hole processing technology on the difficulties, the method has been overcome.
1) Deep processing grade feed:
Ordinary twist drill head in cast iron or steel pieces on the 6 ~ 10mm diameter drill hole below, the general should not be a deep-drilling of 6 ~ 10 times greater than the aperture. When the direction of horizontal drilling, the steel pieces in the deep drilling should not last more than 6 times the diameter, in the cast iron up to about 10 times the aperture. If the processing of the hole depth of more than this range, can be classified into methods for processing, that is, in the drilling process, so that bit processing automatically after a certain depth from the workpiece in order to discharge swarf and cooling, and then re-forward processing, constant back and forth until the process has finished (each drill deep, cast iron pieces from 3 to 6 times the diameter; steel pieces from 0.5 ~ 2 times the aperture, the deeper hole when taking a small value). This process is suitable for drilling deep holes of small diameter, but the productivity and precision mechanics are relatively low.
2) Feeding a deep-hole processing
It is mainly used various types of special segment, and with the next shot, transmission-oriented systems, such as cutting fluid input in the deep-hole drilling machine, hinges, boring and the presentation materials. Discharged from the way the chip can be especially Chip (on the hinge, there is also boring things forward or backward Chip) and with Chip; from a number of cutting edge, can be divided into single-blade, double-edged and multi-blade, cutting edge can be high-speed steel or carbide. Cutter head have a different number of block-oriented support in the process-oriented role play to ensure flatness of the hole, but also from the role of squeezed light to improve the processing of the surface finish hole.
Chip has a deep-hole drilling in a single tube and dual tube Chip Chip (ie, jet drilling). Chip fear of double tube drill pipe than Chip Chip fear deep-hole drilling and drilling outside the processing efficiency and higher accuracy. The deep hole on the barrier is expected to set at the completion of unloading Nesting Nesting knife, cut off the mandrel fitted with a knife and the knife folder to make it against the mandrel, the feed through a dedicated device to cut off, cut to the core diameter rod 4 / 5 ~ 5 / 6 will be back to cut off the knife, a little outside the mandrel to break out.
In general, the use of inside than outside the Chip Chip processing large diameter, obtained by processing high precision and surface finish.
III. The main points of deep-hole processing
Machine tools and processing of the previous process, and attention should check the following:
1) axis-oriented tool sets, Bar sets of bearings, such as the centerline of the workpiece support different sets of axis degrees should meet the requirement.
2) check whether the system is cutting fluid flow and normal work is a multi-edge special deep-hole drilling with Chip (jet drilling suction) of the spray suction effect, in particular, should seriously check.
3) the workpiece should be the upper end of the processing center hole, and to avoid drilling I n the slope.
4) Does the shape of a normal chip. With the workpiece material, tool geometry, cutting parameters and so on. The two separated by a certain direction of each curl inward cutting the best shape to avoid the formation of the ribbon cuttings straight.
5) The higher the speed of processing through-hole, when the drill bit is about to pass, it is best to stop or deceleration to prevent damage to the bit and the exit.
6) should be avoided in the processing of parking, such as the need to stop, they should first stop into the tool and return to some distance, and then stop the pump and the rotation of the main campaign to prevent the tool in the hole a "killed" phenomenon.