matlab實(shí)驗(yàn) 圖像的基本運(yùn)算
《matlab實(shí)驗(yàn) 圖像的基本運(yùn)算》由會(huì)員分享,可在線閱讀,更多相關(guān)《matlab實(shí)驗(yàn) 圖像的基本運(yùn)算(20頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、實(shí)驗(yàn)四、圖像的基本運(yùn)算 1(1)選擇一幅圖像lena8.jpg,設(shè)置輸入/輸出變換的灰度級(jí)范圍,a=0.3,b=0.6,c=0.1,d=0.9 (2)設(shè)置非線性擴(kuò)展函數(shù)的參數(shù)c=2 (3)采用灰度倒置變換函數(shù)s=255-r進(jìn)行圖像變換 (4)設(shè)置二值化圖像的閾值,分別為level=0.4,level=0.7 程序如下 I=imread('C:\lena8.jpg'); figure; subplot(2,3,1); imshow(I); title('原圖'); J=imadjust(I,[0.3;0.6],[0.1;0.9]); %設(shè)置灰度變換的范圍 subp
2、lot(2,3,2); imshow(J); title('線性擴(kuò)展'); I1=double(I); %將圖像轉(zhuǎn)換為double類型 I2=I1/255; %歸一化此圖像 C=2; K=C*log(1+I2); %求圖像的對(duì)數(shù)變換 subplot(2,3,3); imshow(K); title('非線性擴(kuò)展'); M=im2bw(I,0.5); M=~M; %M=255-I; %將此圖
3、像取反 %Figure subplot(2,3,4); imshow(M); title('灰度倒置'); N1=im2bw(I,0.4); %將此圖像二值化,閾值為0.4 N2=im2bw(I,0.7); %將此圖像二值化,閾值為0.7 subplot(2,3,5); imshow(N1); title('二值化閾值0.4'); subplot(2,3,6); imshow(N2); title('二值化閾值0.7'); 2 選取兩幅大小一樣的灰度圖像hough.bmp和rice.bmp,將兩幅圖像進(jìn)行加法
4、運(yùn)算。 程序如下 I=imread('C:\hough.bmp'); %I=rgb2gray(I); J=imread('C:\rice.bmp'); I=im2double(I); %將圖像轉(zhuǎn)換成double型 J=im2double(J); K=I+0.3*J; %兩幅圖像相加 subplot(1,3,1); imshow(I); title('物圖'); subplot(1,3,2); imshow(J); title('背景圖'); subplot(1,3,3); imshow(K)
5、; title('相加后的圖'); imwrite(K,'C:\lena1.jpg'); 3 選取一幅混合圖像,如相加得到的圖像lenal.jpg,將混合圖像與背景圖像做減法運(yùn)算。 程序如下 A=imread('C:\lena1.jpg'); B=imread('C:\rice.bmp'); A=im2double(A); %將圖像轉(zhuǎn)換成double型 B=im2double(B); C=A-0.3*B; subplot(1,3,1); imshow(A); title('混合圖'); subplot(1,3,2); imsh
6、ow(B); title('背景圖'); subplot(1,3,3); imshow(C); title('分離后的圖'); 4 選取一幅尺寸為256x256像素的灰度圖,如rice.bmp。設(shè)置掩模模板,對(duì)于需要保留下來的區(qū)域,掩模圖像的值置為1,而需要被抑制掉的區(qū)域,掩模圖像的值置為0。 程序如下 A=imread('C:\rice.bmp'); %A=rgb2gray(A); A=im2double(A); subplot(1,2,1); imshow(A); title('原圖'); B=zeros(256,256); B(40:200,40:20
7、0)=1; K=A.*B; subplot(1,2,2); imshow(K); title('局部圖'); 5 選取一幅大小為256x256像素的圖像,如lena8.jpg. 分別將圖比例放大1.5倍,比例縮小0.7倍,非比例放大到420x384像素,非比例縮小到15x180像素。 程序如下 A=imread('C:\lena8.jpg'); Bl=imresize(A,1.5); %比例放大1.5倍,默認(rèn)采用的是最近鄰法進(jìn)行線性插值 B2=imresize (A, [420 384]); %非比例放大至420:384 Cl=imresize (A, 0 . 7
8、) ; %比例縮小0.7 倍 C1=imresize(A, 0.7) ; C2=imresize(A, [150 180]) ; %非比例縮小到150:180 figure; imshow(Bl); title('比例放大圖'); figure; imshow(B2); title('非比例放大圖'); figure; imshow(C1); title('比例縮小圖'); figure; imshow(C2); title('非比例縮小圖'); 實(shí)驗(yàn)五、圖像的變換 1 選取一幅圖像,進(jìn)行離散傅里葉變換,再對(duì)其分別進(jìn)行X軸與Y軸上的平移,得其
9、離散傅里葉變換,觀察結(jié)果圖。 程序如下 I=imread('C:\1.bmp'); %I=imread('C:\lena8.jpg'); %imshow(I); imshow(real(I)); figure(1) I=I(:,:,3); fftI=fft2(I); sfftI=fftshift(fftI); %求離散傅里葉頻譜 %對(duì)原始圖像進(jìn)行二維離散傅里葉變換,并將其坐標(biāo)原點(diǎn)移到頻譜圖中央位置 RRfdpl=real(sfftI); IIfdpl=imag(sfftI); a=sqrt(RRfdpl.^2+IIfdpl.^2); a=(a-min(m
10、in(a)))/(max(max(a))-min(min(a)))*225; figure(2); imshow(real(a)); I=imread('C:\2.bmp'); figure(3); imshow(real(I)); I=I(:,:,3); fftI=fft2(I); sfftI=fftshift (fftI) ; %求離散傅里葉頻譜 %對(duì)原始圖像進(jìn)行二維離散傅里葉變換,并將其坐標(biāo)原點(diǎn)移到頻譜圖中央位置 RRfdpl=real(sfftI); IIfdpl=imag(sfftI); a=sqrt(RRfdpl.^2+IIfdpl.^2);
11、a=(a-min(min(a)))/(max(max(a))-min(min(a)))*225; figure(4); imshow(real (a)); I=imread('C:\3.bmp'); figure (5); imshow(real (I)); I=I(:,:,3); fftI=fft2 (I); sfftI = fftshift (fftI) ; %求離散傅里葉頻譜 %對(duì)原始圖像進(jìn)行二維離散傅里葉變換,并將其坐標(biāo)原點(diǎn)移到頻譜圖中央位置 RRfdpl=real (sfftI); IIfdpl=imag(sfftI); a=sqrt(RRfdpl.^2+I
12、Ifdpl.^2); a=(a-min(min(a)))/(max(max(a))-min(min(a)))*225; figure(6); imshow(real(a)); 2 選取一幅圖像,進(jìn)行離散傅里葉變換,再對(duì)其進(jìn)行一定角度的旋轉(zhuǎn),進(jìn)行離散傅里葉變化。 程序如下 %構(gòu)造原始圖像 I=zeros(256,256); I(88:168,124:132)=1; %圖像范圍是256*256,前一值是縱向比,后一值是橫向比 imshow(I); %求原始圖像的傅里葉變換 J=fft2(I); F=abs(J); J1=fftshift(F);figure i
13、mshow(J1,[5 50]); %對(duì)原始圖像進(jìn)行旋轉(zhuǎn) J=imrotate(I,90,'bilinear','crop'); figure imshow(J) %求旋轉(zhuǎn)后圖像的傅里葉頻譜 J1=fft2(J); F=abs(J1); J2=fftshift(F);figure Imshow(J2,[5 50]) 3 選取一幅圖像,進(jìn)行離散余弦變換,并對(duì)其進(jìn)行離散余弦反變換,觀察其結(jié)果 程序如下 %對(duì)lena24.ipg文件計(jì)算二維DCT變換 RGB = imread('C:\lena24.jpg'); figure(1) imshow(RGB) I=
14、rgb2gray(RGB); %真彩色圖像轉(zhuǎn)換成灰度圖像 J = dct2(I); %計(jì)算二維DCT變換 figure (2) imshow(log(abs(J)),[]) %圖像大部分能量集中在上左角處 figure (3); J(abs(J) < 10) = 0; %把變換矩陣中小于10的值置換為0,然后用idct2重構(gòu)圖像 K = idct2(J)/255; imshow(K) 4 選取一幅圖像,進(jìn)行離散余弦變換,并對(duì)其進(jìn)行壓縮解壓,觀察其結(jié)果。 程序如下 RGB = imread('C:\lena24.jpg'); I=rgb2gray(RG
15、B); I = im2double(I); %轉(zhuǎn)換圖像矩陣為雙精度型 T = dctmtx(8); %產(chǎn)生二維00?變換矩陣, %矩陣T及其轉(zhuǎn)置T‘是DCT函數(shù)P1*X*P2的參數(shù) B = blkproc(I, [8 8],'P1*x*P2',T,T'); maskl= [ 1 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16、 0 0 0 0 0 0 0 0 0 0 0 0 0]; %二值掩模,用來壓縮DCT系數(shù) B2=blkproc(B,[8 8],'P1.*x',maskl); %只保留DCT變換的10個(gè)系數(shù) I2=blkproc(B2,[8 8],'P1*x*P2',T',T); %重構(gòu)圖像 figure,imshow(I); figure,imshow(B2); figure,imshow(I2); 實(shí)驗(yàn)六、圖像的增強(qiáng) 1 對(duì)一幅灰度圖像進(jìn)行冪次變換。 程序如下 clear all close all I{1}=double(imread('
17、C:\lena8.jpg')); I{1}=I{1}/255; figure(1),subplot(2,4,1),imshow(I{1}, []),hold on I{2}=double(imread('C:\lena1.jpg')); I{2}=I{2}/255; subplot(2,4,5),imshow(I{2}, []),hold on for m=1:2 Index=0; for lemta=[0.5 5] Index=Index+1; F{m}{Index}=I{m}.^lemta; subplot (2,4,(m-1)*4+Index+1) , im
18、show(F{m}{Index},[]) end end 2 對(duì)一幅灰度圖像采用兩種目標(biāo)直方圖來規(guī)定化。 程序如下 clear all close all %0.讀圖像 I=double(imread('C:\lena8.jpg')); figure, imshow (I,[]) N=32; Hist_image=hist (I(:),N) ; %直方圖 Hist_image=Hist_image/sum (Hist_image); Hist_image_cumulation=cumsum(Hist_image); %累計(jì)直方圖 figure,
19、 stem([0:N-1] ,Hist_image) ; %1.設(shè)計(jì)目標(biāo)直方圖 Index=0:N-1; Index=0:7; %正態(tài)分布直方圖 Hist{1}=exp(-(Index-4).^2/8); Hist{1}=Hist{1}/sum(Hist{1}); Hist_cumulation{1}=cumsum(Hist{1}); figure, stem([0:7],Hist{1}) %倒三角形狀直方圖 Hist{2}=abs(15-2*Index); Hist{2}=Hist{2}/sum(Hist{2}); Hist_cumulation{2}=cum
20、sum(Hist{2}); figure, stem([0:7],Hist{2}) %2.規(guī)定化處理 for m=1:2 Image=I; %2.1 SML處理 for k=1:N Temp=abs(Hist_image_cumulation(k)-Hist_cumulation{m}); [Tempi,Project{m}(k)]=min(Temp); end %2.2變換后直方圖 for k=1:N Temp=find(Project{m}==k); if isempty(Temp) Hist_result{m}(k)=0; else Hi
21、stresult{m}(k)=sum(Hist_image(Temp));
end
end
figure,
stem([0:31],Hist_result{m});
%2.3結(jié)果圖
Step=256/N;
for k=1:N
Index=find(I>=Step*(k-1)&I 22、C:\lena8.jpg'));
figure,imshow(I,[]);
% 1.均值低通濾波
H=fspecial('average',5);
F{1}=double(filter2(H,I));
figure,imshow(F{1},[]);
% 2 . gaussian低通濾波
H=fspecial('gaussian',7,3); F{2}=double(filter2(H,I));
figure,imshow(F{2},[]);
% 3.增強(qiáng)圖像-原圖-均值低通濾波
F{3}=2*I-F{1};
figure,imshow(uint8 (F{3}), 23、[]);
% 4.增強(qiáng)圖像=原圖-高斯低通濾波
F{4}=2*I-F{2};
figure,imshow(uint8 (F{4}),[]);
%5. ‘prewitt’邊緣算子增強(qiáng)
H=fspecial('prewitt');
F{ 5}=uint8(I+filter2(H,I));
figure,imshow(F{5},[]);
%6. ‘sobel’邊緣算子增強(qiáng)
H=fspecial('sobel');
F{6}=uint8(I + filter2(H,I));
figure,imshow(F{6},[]);
實(shí)驗(yàn)7、圖像的復(fù)原
1 對(duì)一幅灰度圖像添加 24、噪聲并濾波。
程序如下
clear;
close all;
%1.生成含噪圖像
img = imread('C:\lena8.bmp');
figure; imshow(img);
img =double(imnoise(img,'salt & pepper', 0.01));
figure,imshow(img,[]);
%2.采用均值濾波
N=5; %濾波模板大小
h=fspecial('average',N);
I=filter2(h,img);
figure,imshow(I,[])
%3.中值濾波
I=medfilt2(img,[ 25、N N]);
figure,imshow(I,[])
%4.最大值濾波
I=ordfilt2(img,N*N,true(N));
figure,imshow(I,[])
%5.最小值濾波
I=ordfilt2(img,1,true(N));
figure,imshow(I,[])
2 對(duì)沿X軸方向的紋波加性噪聲進(jìn)行陷波濾波。
程序如下
close all
clear all
%1.生成波紋噪聲圖像
img = double(imread('C:\lena8.bmp'));
figure; imshow(img,[]);
sizec=size(img 26、);
w=0.4*2*pi; %噪聲的數(shù)字頻率
N=2*pi/w; %噪聲每一周期的采樣點(diǎn)數(shù)
img_noise=img+20*ones(sizec(1),1)*sin(w*[1:sizec(2)]);
figure,imshow(img_noise,[]);
%圖像頻譜
F0=fft2(img);
F0=fftshift(F0);
figure,imshow(log(abs(F0)),[]);
F=fft2(img_noise);
F=fftshift(F);
figure,imshow(log(abs(F)),[]);
%2.設(shè)計(jì)理想陷波濾波器
H=ones(sizec(1),sizec(2));
%圖像中心點(diǎn)
x0=sizec(1)/2+1;
y0=sizec(2)/2+1;
%噪聲所處頻率點(diǎn)(x,y)
x=x0;
y=y0-round(sizec(2)/N);
H (x,y-3:y+3)=0;
H(x,(y0-y)+y0-3:(y0-y)+y0+3)=0;
%3.濾波結(jié)果
I=ifftshift(F.*H);
imgl=ifft2(I);
figure; imshow(imgl,[]);
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2023年六年級(jí)數(shù)學(xué)下冊(cè)6整理和復(fù)習(xí)2圖形與幾何第7課時(shí)圖形的位置練習(xí)課件新人教版
- 2023年六年級(jí)數(shù)學(xué)下冊(cè)6整理和復(fù)習(xí)2圖形與幾何第1課時(shí)圖形的認(rèn)識(shí)與測(cè)量1平面圖形的認(rèn)識(shí)練習(xí)課件新人教版
- 2023年六年級(jí)數(shù)學(xué)下冊(cè)6整理和復(fù)習(xí)1數(shù)與代數(shù)第10課時(shí)比和比例2作業(yè)課件新人教版
- 2023年六年級(jí)數(shù)學(xué)下冊(cè)4比例1比例的意義和基本性質(zhì)第3課時(shí)解比例練習(xí)課件新人教版
- 2023年六年級(jí)數(shù)學(xué)下冊(cè)3圓柱與圓錐1圓柱第7課時(shí)圓柱的體積3作業(yè)課件新人教版
- 2023年六年級(jí)數(shù)學(xué)下冊(cè)3圓柱與圓錐1圓柱第1節(jié)圓柱的認(rèn)識(shí)作業(yè)課件新人教版
- 2023年六年級(jí)數(shù)學(xué)下冊(cè)2百分?jǐn)?shù)(二)第1節(jié)折扣和成數(shù)作業(yè)課件新人教版
- 2023年六年級(jí)數(shù)學(xué)下冊(cè)1負(fù)數(shù)第1課時(shí)負(fù)數(shù)的初步認(rèn)識(shí)作業(yè)課件新人教版
- 2023年六年級(jí)數(shù)學(xué)上冊(cè)期末復(fù)習(xí)考前模擬期末模擬訓(xùn)練二作業(yè)課件蘇教版
- 2023年六年級(jí)數(shù)學(xué)上冊(cè)期末豐收?qǐng)@作業(yè)課件蘇教版
- 2023年六年級(jí)數(shù)學(xué)上冊(cè)易錯(cuò)清單十二課件新人教版
- 標(biāo)準(zhǔn)工時(shí)講義
- 2021年一年級(jí)語文上冊(cè)第六單元知識(shí)要點(diǎn)習(xí)題課件新人教版
- 2022春一年級(jí)語文下冊(cè)課文5識(shí)字測(cè)評(píng)習(xí)題課件新人教版
- 2023年六年級(jí)數(shù)學(xué)下冊(cè)6整理和復(fù)習(xí)4數(shù)學(xué)思考第1課時(shí)數(shù)學(xué)思考1練習(xí)課件新人教版