八年級數(shù)學下冊 期末檢測題 (新版)浙教版
-
資源ID:11763300
資源大小:216.50KB
全文頁數(shù):6頁
- 資源格式: DOC
下載積分:9.9積分
快捷下載
會員登錄下載
微信登錄下載
微信掃一掃登錄
友情提示
2、PDF文件下載后,可能會被瀏覽器默認打開,此種情況可以點擊瀏覽器菜單,保存網(wǎng)頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預覽文檔經(jīng)過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標題沒有明確說明有答案則都視為沒有答案,請知曉。
|
八年級數(shù)學下冊 期末檢測題 (新版)浙教版
期末檢測題(時間:100分鐘滿分:120分)一、精心選一選(每小題3分,共30分)1下列四個圖形分別是四屆國際數(shù)學家大會的會標:其中屬于中心對稱圖形的有( B )A1個 B2個 C3個 D4個2下列計算錯誤的是( D )A.7 B.C.8 D333多邊形的每個內(nèi)角都等于150,則從此多邊形的一個頂點出發(fā)可作的對角線共有( B )A8條 B9條 C10條 D11條4順次連結(jié)矩形ABCD各邊的中點,所得四邊形必定是( D )A鄰邊不等的平行四邊形 B矩形C正方形 D菱形5某蔬菜生產(chǎn)基地在氣溫較低時,用裝有恒溫系統(tǒng)的大棚栽培一種在自然光照且溫度為18 的條件下生長最快的新品種如圖是某天恒溫系統(tǒng)從開啟到關閉及關閉后,大棚內(nèi)溫度y()隨時間x(小時)變化的函數(shù)圖象,其中BC段是雙曲線y(k0)的一部分,則當x16時,大棚內(nèi)的溫度約為( C )A18 B15.5 C13.5 D12 ,第5題圖),第9題圖),第10題圖)6已知四邊形ABCD,下列說法正確的是( B )A當ADBC,ABDC時,四邊形ABCD是平行四邊形B當ADBC,ABDC時,四邊形ABCD是平行四邊形C當ACBD,AC平分BD時,四邊形ABCD是矩形D當ACBD,ACBD時,四邊形ABCD是正方形7為了解某社區(qū)居民的用電情況,隨機對該社區(qū)10戶居民進行了調(diào)查,下表是10戶居民今年4月份用電量的調(diào)查結(jié)果:居民(戶)1324月用電量(度/戶)40505560那么關于這10戶居民月用電量(單位:度),下列說法錯誤的是( C )A中位數(shù)是55 B眾數(shù)是60 C方差是29 D平均數(shù)是548關于x的方程mx2(m2)x20只有一解(相同解算一解),則m的值為( D )A0 B2 C1 D0或29如圖,矩形AOBC的面積為4,反比例函數(shù)y的圖象的一支經(jīng)過矩形對角線的交點P,則該反比例函數(shù)的表達式是( A )Ay By Cy Dy10如圖,在矩形ABCD中,點E,F(xiàn)分別在邊AB,BC上,且AEAB,將矩形沿直線EP重疊,點B恰好落在AD邊上的點P處,連結(jié)BP交EF于點Q.對于下列結(jié)論:EF2BE;PF2PE;FQ4EQ;PBF是等邊三角形其中正確的是( D )A B C D二、細心填一填(每小題3分,共24分)11如圖,在RtABC中,ACB90,點D,E,F(xiàn)分別為AB,AC,BC的中點,若CD5,則EF的長為_5_,第11題圖),第16題圖),第17題圖),第18題圖)12已知xy0,化簡二次根式x的結(jié)果為_13如果一組數(shù)據(jù)x1,x2,xn的方差是2,那么一組新數(shù)據(jù)2x11,2x21,2xn1的標準差是_2_14某班數(shù)學興趣小組10名同學的年齡情況如下表:年齡(歲)12131415人數(shù)1441則這10名同學年齡的平均數(shù)是_13.5歲_,中位數(shù)是_13.5歲_,眾數(shù)是_13歲和14歲_15已知一元二次方程x24x30的兩根為m,n,則m2mnn2_25_16如圖,在菱形ABCD中,對角線AC與BD相交于點O,AC8,BD6,OEBC,垂足為點E,則OE_17如圖,直線ykx(k0)與雙曲線y交于A(x1,y1),B(x2,y2),則2x1y27x2y1_20_18如圖,在平面直角坐標系中,正方形的中點在原點O,且正方形的一組對邊與x軸平行,點P(3a,a)是反比例函數(shù)y(k0)的圖象與正方形的一個交點若圖中陰影部分的面積等于9,則k_3_三、耐心做一做(共66分)19(5分)解方程:(x3)(x3)2x.解:x13,x220(8分)設,是關于x的方程x24xk10的兩個實數(shù)根,是否存在實數(shù)k,使得成立?請說明理由解:不存在理由:由164(k1)0,得k3,由4,k1,得k14,k3,不存在實數(shù)k,使得成立21.(7分)已知x,求代數(shù)式的值解:x2,原式,當x2時,原式122(8分)小麗為校合唱隊購買某種服裝時,商店經(jīng)理給出了如下優(yōu)惠條件:如果一次性購買不超過10件單價為80元;如果一次性購買多于10件,那么每增加1件,購買的所有服裝的單價降低2元,但單價不得低于50元按此優(yōu)惠條件,小麗一次性購買這種服裝付了1 200元請問她購買了多少件這種服裝?解:設購買了x件這種服裝,根據(jù)題意得出:802(x10)x1 200,解得x120,x230,當x30時,802(3010)40(元)50不合題意舍去答:她購買了20件這種服裝23如圖,在平面直角坐標系中,直線y3x3與x軸,y軸分別交于A,B,兩點,以AB為邊在第一象限內(nèi)作正方形ABCD,點D在反比例函數(shù)y(k0)的圖象上(1)求k的值;(2)若將正方形沿x軸負方向平移m個單位長度后,點C恰好落在該反比例函數(shù)的圖象上,則m的值是多少?解:(1)如圖,作DFx軸于點F.在y3x3中,令x0,解得:y3,即B的坐標是(0,3)令y0,解得x1,即A的坐標是(1,0)則OB3,OA1.BAD90,BAODAF90,又BAOOBA90,DAFOBA,又ABAD,BOAAFD90,OABFDA(AAS),AFOB3,DFOA1,OF4,點D的坐標是(4,1),將點D的坐標(4,1)代入y得:k4(2)如圖,作CEy軸于點E,交反比例函數(shù)圖象于點G.與(1)同理可證,OABEBC,OBEC3,OABE1,則可得OE4,點C的坐標是(3,4),則點G的縱坐標是4,把y4代入y得:x1.即點G的坐標是(1,4),OG2,即m224(8分)某校九年級學生開展踢毽子比賽活動,每班派5名同學參加,按團體總分多少排列名次,在規(guī)定時間內(nèi)每人踢100個以上(含100)為優(yōu)秀,下表是成績最好的甲班和乙班5名學生的比賽數(shù)據(jù)(單位:個)1號2號3號4號5號總分甲班1009811089103500乙班891009511997500統(tǒng)計發(fā)現(xiàn)兩班總分相等,此時有同學建議,可以通過考查數(shù)據(jù)中的其他信息作為參考,請你解答下列問題:(1)計算兩班的優(yōu)秀率;(2)求兩班比賽數(shù)據(jù)的中位數(shù);(3)估計兩班比賽數(shù)據(jù)的方差哪一個?。?4)根據(jù)以上三條信息,你認為應該把冠軍獎狀發(fā)給哪一個班?簡述理由解:(1)甲班的優(yōu)秀率是100%60%;乙班的優(yōu)秀率是100%40%(2)甲班5名學生比賽成績的中位數(shù)為100(個);乙班5名學生成績的中位數(shù)為97(個)(3)x甲500100(個),x乙500100(個);S甲2(100100)2(98100)2(110100)2(89100)2(103100)246.8,S乙2(89100)2(100100)2(95100)2(119100)2(97100)2103.2,甲班的方差小(4)因為甲班5人比賽成績的優(yōu)秀率比乙班高、中位數(shù)比乙班大、方差比乙班小,應該把冠軍獎狀發(fā)給甲班25(10分)如圖,在平面直角坐標系中,矩形OABC的對角線OB,AC相交于點D,且BEAC,AEOB.(1)求證:四邊形AEBD是菱形;(2)如果OA3,OC2,求出經(jīng)過點E的反比例函數(shù)表達式解:(1)BEAC,AEOB,四邊形AEBD是平行四邊形,四邊形OABC是矩形,DAAC,DBOB,ACOB,DADB,四邊形AEBD是菱形(2)連結(jié)DE,交AB于F,如圖所示,四邊形AEBD是菱形,AB與DE互相垂直平分,OA3,OC2,EFDFOA,AFAB1,3,點E坐標為(,1),設經(jīng)過點E的反比例函數(shù)表達式為y,把點E(,1)代入得k,經(jīng)過點E的反比例函數(shù)表達式為y26(12分)正方形ABCD中,M,N分別是直線CB,DC上的動點,MAN45.(1)如圖,當MAN交邊CB,DC于點M,N時,線段BM,DN和MN之間有怎樣的數(shù)量關系?請證明;(2)如圖,當MAN分別交邊CB,DC的延長線于點M,N時,線段BM,DN和MN之間又有怎樣的數(shù)量關系?請寫出你的猜想,并加以證明;(3)在圖中,若正方形的邊長為16 cm,DN4 cm,請利用(1)中的結(jié)論,試求MN的長解:(1)BMDNMN.證明:延長CD至點Q,使DQBM,連結(jié)AQ,易證ADQABM(SAS),AQAM,DAQBAM,QANDANDAQDANBAM90MAN45MAN,AQNANM(SAS),MNQNDNDQBMDN(2)DNBMMN.證明:在DN上截取DKBM,連接AK,易證ADKABM,AKAM,DAKBAM,MANBAMBANDAKBAN45,即DAKBAN45,KAN90(DAKBAN)904545,KANMAN45,KANMAN(SAS),MNKNDNDKDNBM(3)設MNx,則BMMNDNx4,CMBCBM16(x4)20x,在RtCMN中,由勾股定理得(164)2(20x)2x2,解得x13.6,MN13.6 cm