2020版高考數學一輪復習 課后限時集訓26 平面向量的數量積與平面向量應用舉例 理(含解析)新人教A版

上傳人:Sc****h 文檔編號:116668315 上傳時間:2022-07-06 格式:DOC 頁數:6 大小:2.42MB
收藏 版權申訴 舉報 下載
2020版高考數學一輪復習 課后限時集訓26 平面向量的數量積與平面向量應用舉例 理(含解析)新人教A版_第1頁
第1頁 / 共6頁
2020版高考數學一輪復習 課后限時集訓26 平面向量的數量積與平面向量應用舉例 理(含解析)新人教A版_第2頁
第2頁 / 共6頁
2020版高考數學一輪復習 課后限時集訓26 平面向量的數量積與平面向量應用舉例 理(含解析)新人教A版_第3頁
第3頁 / 共6頁

下載文檔到電腦,查找使用更方便

22 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2020版高考數學一輪復習 課后限時集訓26 平面向量的數量積與平面向量應用舉例 理(含解析)新人教A版》由會員分享,可在線閱讀,更多相關《2020版高考數學一輪復習 課后限時集訓26 平面向量的數量積與平面向量應用舉例 理(含解析)新人教A版(6頁珍藏版)》請在裝配圖網上搜索。

1、課后限時集訓(二十六) 平面向量的數量積與平面向量應用舉例 (建議用時:60分鐘) A組 基礎達標 一、選擇題 1.(2018·陜西二模)已知向量a=(2,3),b=(x,4).若a⊥(a-b),則x=(  ) A.1  B.  C.2   D.3 B [由題意,得a-b=(2-x,-1).因為a⊥(a-b),所以2×(2-x)+3×(-1)=0,解得x=,故選B.] 2.已知向量a=(x2,x+2),b=(-,-1),c=(1,),若a∥b,則a與c夾角為(  ) A. B. C. D. A [cos〈b,c〉===-,又由x2≥0且a∥b得a,b是反向共線,則cos

2、〈a,c〉=-cos〈b,c〉=,〈a,c〉∈[0,π],則〈a,c〉=,故選A.] 3.(2019·西寧模擬)如圖在邊長為1的正方形組成的網格中,平行四邊形ABCD的頂點D被陰影遮住,請設法計算·=(  ) A.10 B.11 C.12 D.13 B [以A為坐標原點,建立平面直角坐標系,則A(0,0),B(4,1),C(6,4),=(4,1),==(2,3),∴·=4×2+1×3=11,故選B.] 4.(2019·銀川模擬)在正方形ABCD中,點E為BC的中點,若點F滿足=λ,且·=0,則λ=(  ) A. B. C. D. A [以A為坐標原點,AB,AD所在

3、直線分別為x軸、y軸建立平面直角坐標系(圖略),設正方形ABCD的邊長為2,則A(0,0),B(2,0),C(2,2),D(0,2),E(2,1),由于=λ,則點F在直線AC上,設F(a,a),那么·=(2,1)·(a-2,a)=3a-4=0,解得a=,結合=λ,可得=2λ,解得λ=,故選A.] 5.已知平面向量a,b,c滿足|a|=|b|=|c|=1,若a·b=,則(a+c)·(2b-c)的最小值為(  ) A.-2 B.- C.-1 D.0 B [因為a·b=|a||b|·cos〈a,b〉=cos〈a,b〉=,所以〈a,b〉=.不妨設a=(1,0),b=,c=(cos θ,s

4、in θ),則(a+c)·(2b-c)=2a·b-a·c+2b·c-c2=1-cos θ+2-1=sin θ,所以(a+c)·(2b-c)的最小值為-,故選B.] 二、填空題 6.(2019·青島模擬)已知向量a,b滿足|b|=5,|a+b|=4,|a-b|=6,則向量a在向量b上的投影為________. -1 [設向量a,b的夾角為θ,則|a+b|2=|a|2+2|a||b|cos θ+|b|2=|a|2+10|a|cos θ+25=16,|a-b|2=|a|2-2|a||b|cos θ+|b|2=|a|2-10|a|cos θ+25=36,兩式相減整理得|a|cos θ=-1,即向

5、量a在向量b上的投影為|a|cos θ=-1.] 7.(2018·南昌一模)平面向量a=(1,m),b=(4,m),若有(2|a|-|b|)(a+b)=0,則實數m=________. ±2 [由題意可得a+b≠0,則2|a|=|b|,即4(1+m2)=16+m2,解得m2=4,m=±2.] 8.已知非零向量m,n滿足4|m|=3|n|,cos〈m,n〉=,若n與tm-n夾角為鈍角,則實數t的取值范圍是________. (-∞,0)∪(0,4) [∵n與(tm-n)夾角為鈍角, ∴n·(tm-n)<0且n與(tm-n)不共線. ∴又m·n=|m||n|cos〈m,n〉=n2×=n

6、2. 即n2-n2<0且t≠0,∴t<4且t≠0.] 三、解答題 9.(2017·江蘇高考)已知向量a=(cos x,sin x),b=(3,-),x∈[0,π]. (1)若a∥b,求x的值; (2)記f(x)=a·b,求f(x)的最大值和最小值以及對應的x的值. [解] (1)因為a=(cos x,sin x),b=(3,-),a∥b, 所以-cos x=3sin x. 若cos x=0,則sin x=0,與sin2x+cos2x=1矛盾, 故cos x≠0. 于是tan x=-. 又x∈[0,π],所以x=. (2)f(x)=a·b=(cos x,sin x)·(3

7、,-) =3cos x-sin x=2cos. 因為x∈[0,π],所以x+∈, 從而-1≤cos≤. 于是,當x+=,即x=0時,f(x)取到最大值3; 當x+=π,即x=時,f(x)取到最小值-2. 10.已知|a|=2,|b|=1. (1)若a⊥b,求(2a-b)·(a+b)的值; (2)若不等式|a+xb|≥|a+b|對一切實數x恒成立,求a與b夾角的大?。? [解] (1)∵a⊥b, ∴a·b=0, ∴(2a-b)·(a+b)=2a2+a·b-b2=7. (2)設向量a,b的夾角為θ,則 a·b=|a||b|cos θ=2cos θ. 不等式|a+xb|≥|

8、a+b|兩邊平方可得: a2+2a·bx+x2b2≥a2+2a·b+b2, 即:4+4xcos θ+x2≥4+4cos θ+1. 整理得: x2+4xcos θ-4cos θ-1≥0.(*) 因為不等式對一切實數x恒成立, 則Δ=16cos2θ+4(4cos θ+1) =4(4cos2θ+4cos θ+1) =4(2cos θ+1)2≤0, ∴2cos θ+1=0, 即cos θ=-. 又θ∈[0,π], ∴θ=π. B組 能力提升 1.(2018·石家莊二模)若兩個非零向量a,b滿足|a+b|=|a-b|=2|b|,則向量a+b與a的夾角為(  ) A.    

9、B.    C.    D. A [由|a+b|=|a-b|知,a·b=0,所以a⊥b.將|a-b|=2|b|兩邊平方,得|a|2-2a·b+|b|2=4|b|2,所以|a|2=3|b|2,所以|a|=|b|,所以cos〈a+b,a〉====,所以向量a+b與a的夾角為,故選A.] 2.(2018·天津高考)如圖,在平面四邊形ABCD中,AB⊥BC,AD⊥CD,∠BAD=120°,AB=AD=1.若點E為邊CD上的動點,則·的最小值為(  ) A. B. C. D.3 A [以D為原點建立平面直角坐標系,如圖所示. 連接AC,易知∠CAD=∠CAB=60°,∠ACD=∠

10、ACB=30°, ∴D(0,0),A(1,0),B,C(0,). 設E(0,y)(0≤y≤), 則=(-1,y), =, ∴·=+y2-y=2+, ∴當y=時,·有最小值,故選A.] 3.在△ABC中,a,b,c為A,B,C的對邊,a,b,c成等比數列,a+c=3,cos B=,則·=________. - [由a,b,c成等比數列得ac=b2,在△ABC中,由余弦定理可得cos B==,則=,解得ac=2, 則·=accos(π-B)=-accos B=-.] 4.在如圖所示的平面直角坐標系中,已知點A(1,0)和點B(-1,0),||=1,且∠AOC=θ,其中O為坐

11、標原點. (1)若θ=π,設點D為線段OA上的動點,求|+|的最小值; (2)若θ∈,向量m=,n=(1-cos θ,sin θ-2cos θ),求m·n的最小值及對應的θ值. [解] (1)設D(t,0)(0≤t≤1), 由題意知C, 所以+=, 所以|+|2=-t+t2+ =t2-t+1=2+, 所以當t=時,|+|最小,為. (2)由題意得C(cos θ,sin θ),m==(cos θ+1,sin θ), 則m·n=1-cos2θ+sin2θ-2sin θcos θ=1-cos 2θ-sin 2θ=1-sin, 因為θ∈, 所以≤2θ+≤, 所以當2θ+=, 即θ=時,sin取得最大值1. 所以m·n的最小值為1-,此時θ=. - 6 -

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網站聲明 - 網站地圖 - 資源地圖 - 友情鏈接 - 網站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網,我們立即給予刪除!