《2020版高考數(shù)學(xué)一輪復(fù)習(xí) 課后限時(shí)集訓(xùn)28 數(shù)列的概念與簡(jiǎn)單表示法 理(含解析)北師大版》由會(huì)員分享,可在線閱讀,更多相關(guān)《2020版高考數(shù)學(xué)一輪復(fù)習(xí) 課后限時(shí)集訓(xùn)28 數(shù)列的概念與簡(jiǎn)單表示法 理(含解析)北師大版(5頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、課后限時(shí)集訓(xùn)(二十八)數(shù)列的概念與簡(jiǎn)單表示法(建議用時(shí):60分鐘)A組基礎(chǔ)達(dá)標(biāo)一、選擇題1(2019延安模擬)設(shè)數(shù)列an的前n項(xiàng)和為Sn,若Sn2n1(nN),則a2 018的值為()A2B3C2018D4035Aa2 018S2018S2017220181(220171)2.故選A.2(2018石家莊一模)若數(shù)列an滿足a12,an1,則a2018的值為()A2 B3 C DBa12,an1,a23,同理a3,a4,a52,可得an4an,a2018a50442a23,故選B3設(shè)數(shù)列an的前n項(xiàng)和為Sn,若a14,an12Sn4,則S10()A2(3101) B2(3101)C2(391)
2、D4(391)Ca14,an12Sn4,a22a144,又當(dāng)n2時(shí),an2Sn14,得an1an2an,即an13an.an是從第二項(xiàng)起構(gòu)成公比為3的等比數(shù)列,S10a1(a2a3a10)42(391)4(2019長(zhǎng)春調(diào)研)設(shè)an3n215n18,則數(shù)列an中的最大項(xiàng)的值是()A. B C4 D0Dan32,又nN*,故當(dāng)n2或3時(shí),an最大,最大為0,故選D5(2018鄭州二模)已知f(x)數(shù)列an(nN*)滿足anf(n),且an是遞增數(shù)列,則a的取值范圍是()A(1,) BC(1,3) D(3,)D因?yàn)閍nf(n),且an是遞增數(shù)列,所以則得a3.故選D二、填空題6已知數(shù)列an的前n項(xiàng)和
3、Snn22n1(nN*),則an_.當(dāng)n2時(shí),anSnSn12n1,又當(dāng)n1時(shí),a1S14,an7在一個(gè)數(shù)列中,如果任意nN*,都有anan1an2k(k為常數(shù)),那么這個(gè)數(shù)列叫做等積數(shù)列,k叫做這個(gè)數(shù)列的公積已知數(shù)列an是等積數(shù)列,且a11,a22,公積為8,則a1a2a3a12_.28a1a2a38,且a11,a22.a34,同理可求a41,a52.a64,an是以3的周期的數(shù)列,a1a2a3a12(124)428.8已知數(shù)列an中,a13,且點(diǎn)Pn(an,an1)(nN*)在直線4xy10上,則數(shù)列an的通項(xiàng)公式為_(kāi)an4n1因?yàn)辄c(diǎn)Pn(an,an1)(nN*)在直線4xy10上,所以4
4、anan110,所以an14.因?yàn)閍13,所以a1.故數(shù)列是首項(xiàng)為,公比為4的等比數(shù)列所以an4n1,故數(shù)列an的通項(xiàng)公式為an4n1.三、解答題9已知Sn為正項(xiàng)數(shù)列an的前n項(xiàng)和,且滿足Snaan(nN*)(1)求a1,a2,a3,a4的值;(2)求數(shù)列an的通項(xiàng)公式解(1)由Snaan(nN*)可得a1aa1,解得a11,S2a1a2aa2,解得a22,同理,a33,a44.(2)Sna,當(dāng)n2時(shí),Sn1a,得(anan11)(anan1)0.由于anan10,所以anan11,又由(1)知a11,故數(shù)列an為首項(xiàng)為1,公差為1的等差數(shù)列,故ann.10已知數(shù)列an的通項(xiàng)公式是ann2kn
5、4.(1)若k5,則數(shù)列中有多少項(xiàng)是負(fù)數(shù)?n為何值時(shí),an有最小值?并求出最小值;(2)對(duì)于nN*,都有an1an,求實(shí)數(shù)k的取值范圍解(1)由n25n40,解得1nan知該數(shù)列是一個(gè)遞增數(shù)列,又因?yàn)橥?xiàng)公式ann2kn4,可以看作是關(guān)于n的二次函數(shù),考慮到nN*,所以3.所以實(shí)數(shù)k的取值范圍為(3,)B組能力提升1設(shè)an是等比數(shù)列,則“a1a2a3”是“數(shù)列an是遞減數(shù)列”的()A充分而不必要條件B必要而不充分條件C充分必要條件 D既不充分也不必要條件C設(shè)數(shù)列an的公比為q,因?yàn)閍1a2a3,所以a1a1qa1q2,解得或故數(shù)列an是遞減數(shù)列;反之,若數(shù)列an是遞減數(shù)列,則a1a2a3,所以
6、a1a2a3是數(shù)列an是遞減數(shù)列的充分必要條件,故選C.2已知數(shù)列an滿足a160,an1an2n,則的最小值為()A.B29 C102DA因?yàn)閍n1an2n,所以當(dāng)n2時(shí),ana1(a2a1)(a3a2)(anan1)60242(n1)n(n1)60n2n60,所以n1,令f(x)x(x2),由函數(shù)性質(zhì)可知,f(x)在區(qū)間2,2)上遞減,在區(qū)間(2,)上遞增,又728,n為正整數(shù),故當(dāng)n7時(shí),71;當(dāng)n8時(shí),81,且60,所以的最小值為.故選A.3已知數(shù)列an的各項(xiàng)均不為0,其前n項(xiàng)和為Sn,且a11,2Snanan1,則Sn_.當(dāng)n1時(shí),2S1a1a2,即2a1a1a2,a22.當(dāng)n2時(shí),
7、2Snanan1,2Sn1an1an,兩式相減得2anan(an1an1),an0,an1an12,a2k1,a2k都是公差為2的等差數(shù)列,又a11,a22,an是公差為1的等差數(shù)列,an1(n1)1n,Sn.4設(shè)數(shù)列an的前n項(xiàng)和為Sn.已知a1a(a3),an1Sn3n,nN*.(1)設(shè)bnSn3n,求數(shù)列bn的通項(xiàng)公式;(2)若an1an,nN*,求a的取值范圍解(1)依題意得Sn1Snan1Sn3n,即Sn12Sn3n,由此得Sn13n12(Sn3n),即bn12bn,又b1S13a3,因此,所求通項(xiàng)公式為bn(a3)2n1,nN*.(2)由(1)可知Sn3n(a3)2n1,nN*.于是,當(dāng)n2時(shí),anSnSn13n(a3)2n13n1(a3)2n223n1(a3)2n2,an1an43n1(a3)2n22n2,所以,當(dāng)n2時(shí),an1an12n2a30a9,又a2a13a1,a3.所以,所求的a的取值范圍是9,3)(3,)- 5 -