【高考復(fù)習(xí)方案2015年高三數(shù)學(xué)(文科)二輪復(fù)習(xí)(浙江省專用) 專題限時集訓(xùn)15
《【高考復(fù)習(xí)方案2015年高三數(shù)學(xué)(文科)二輪復(fù)習(xí)(浙江省專用) 專題限時集訓(xùn)15》由會員分享,可在線閱讀,更多相關(guān)《【高考復(fù)習(xí)方案2015年高三數(shù)學(xué)(文科)二輪復(fù)習(xí)(浙江省專用) 專題限時集訓(xùn)15(10頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、專題限時集訓(xùn)(十五)A
[第15講 圓錐曲線中的熱點問題]
(時間:5分鐘+40分鐘)
基礎(chǔ)演練
1.已知a,b為正常數(shù),F(xiàn)1,F(xiàn)2是兩個定點,且|F1F2|=2a(a是正常數(shù)),動點P滿足|PF1|+|PF2|=a2+1,則動點P的軌跡是( )
A.橢圓 B.線段
C.橢圓或線段 D.直線
2.若直線y=kx+1與焦點在x軸上的橢圓+=1恒有公共點,則m的取值范圍為( )
A.0
2、 ) A.(0,2) B.(2,0) C.(4,0) D.(0,4) 4.已知點P是雙曲線-=1上任一點,過P作x軸的垂線,垂足為Q,則PQ的中點M的軌跡方程是( ) A.-=1 B.-=1 C.-=1 D.-=1 5.若拋物線y2=2px的焦點在圓(x-p)2+(y-1)2=4內(nèi),則實數(shù)p的取值范圍是____. 提升訓(xùn)練 6.在直角坐標(biāo)平面內(nèi),已知兩點A(-2,0),B(2,0),動點Q到點A的距離為6,線段BQ的垂直平分線交AQ于點P,則點P的軌跡方程是( ) A.+=1 B.+=1 C.+=1 D.+=1 7.已知點P為拋物線x2=12y的
3、焦點,A,B是雙曲線3x2-y2=12的兩個頂點,則△APB的面積為( ) A.4 B.6 C.8 D.12 8.已知P為橢圓+=1上的一點,M,N分別為圓(x+3)2+y2=1和圓(x-3)2+y2=4上的點,則|PM|+|PN|的最小值為( ) A.5 B.7 C.13 D.15 9.已知直線l1:4x-3y+6=0和直線l2:x=-1,拋物線y2=4x上一動點P到直線l1和直線l2的距離之和的最小值是( ) A.2 B.3 C. D.. 10.已知P為拋物線y2=4x上一個動點,Q為圓x2+(y-3)2=
4、1上一個動點,那么點P到點Q的距離與點P到拋物線的準(zhǔn)線距離之和的最小值是________. 11.已知動點M(x,y),向量m=(x-3,y),n=(x+3,y),且滿足|m|+|n|=8,則動點P的軌跡方程是____________. 12.如圖15-1所示,直線y=m與拋物線y2=4x交于點A,與圓(x-1)2+y2=4的實線部分交于點B, F為拋物線的焦點,則△ABF的周長的取值范圍是________. 圖15-1 13.已知拋物線C的頂點在坐標(biāo)原點,焦點在x軸上,P(2,0)為定點. (1)若點P為拋物線的焦點,求拋物線C的方程. (2)若動圓M過點P,且圓心M在拋物線
5、C上運(yùn)動,點A,B是圓M與y軸的兩交點,試推斷是否存在一條拋物線C,使|AB|為定值?若存在,求這個定值;若不存在,說明理由. 14.已知橢圓C:+=1(a>b>0)的離心率與等軸雙曲線的離心率互為倒數(shù),直線l:x-y+=0與以原點為圓心,以橢圓C的短半軸長為半徑的圓相切. (1)求橢圓C的方程; (2)設(shè)M是橢圓的上頂點,過點M分別作直線MA, MB交橢圓于A,B兩點,設(shè)兩直線的斜率分別為k1, k2, 且k1+k2=2,證明:直線AB過定點(-1,-1). 15.已知拋物線的頂點為(0,0),準(zhǔn)線為x=-2,不垂直
6、于x軸的直線x=ty+1與該拋物線交于A,B兩點,圓M以AB為直徑. (1)求拋物線的方程. (2)圓M交x軸的負(fù)半軸于點C,是否存在實數(shù)t,使得 △ABC的內(nèi)切圓的圓心在x軸上?若存在,求出t的值;若不存在,說明理由. 專題限時集訓(xùn)(十五)B [第15講 圓錐曲線中的熱點問題] (時間:5分鐘+40分鐘) 基礎(chǔ)演練 1.如圖15-2,橢圓C0:+=1(a>b>0,a,b為常數(shù)),動圓C1:x2+y2=t,b<t1<a.點A1,A2分別為C0的左,右頂點.C1與C0相交于A,B,C,D四點. (1)求直線AA1與直線A2B交點M的軌跡方程; (2)設(shè)動圓C2:x2+y2
7、=t與C0相交于A′,B′,C′,D′四點,其中b<t2<a,t1≠t2.若矩形ABCD與矩形A′B′C′D′的面積相等.證明:t+t為定值. 圖15-2 2.已知動點P到直線l:x+4=0的距離與它到點M(2,0)的距離之差為2,記點P的軌跡為曲線C. (1)求曲線C的方程. (2)問直線l上是否存在點Q,使得過點Q且斜率分別為k1,k2的兩直線與曲線C相切,同時滿足k1+2k2=0?若存在,求出點Q的坐標(biāo);若不存在,請說明理由. 3.已知圓心為F1的圓的方程為(x+2)2 +y2=32,F(xiàn)2(2,0),C是圓
8、F1上的動點,F(xiàn)2C的垂直平分線交F1C于M. (1)求動點M的軌跡方程; (2)設(shè)N(0,2),過點P(-1,-2)作直線l,交M的軌跡于不同于N的A,B兩點,直線NA,NB的斜率分別為k1,k2,證明:k1+k2為定值. 提升訓(xùn)練 4.如圖15-3所示,兩條相交線段AB,PQ的四個端點都在拋物線y2=x上,其中,直線AB的方程為x=m,直線PQ的方程為y=x+n. (1)若n=0,∠BAP=∠BAQ,求m的值. (2)探究:是否存在常數(shù)m,當(dāng)n變化時,恒有∠BAP=∠BAQ? 圖15-3
9、 5.設(shè)橢圓+=1(a>b>0)的左、右頂點分別為A,B,點P在橢圓上且異于A,B兩點,O為坐標(biāo)原點. (1)若直線AP與BP的斜率之積為-,求橢圓的離心率; (2)若|AP|=|OA|,證明直線OP的斜率k滿足|k|>. 專題限時集訓(xùn)(十五)A 【基礎(chǔ)演練】 1.C [解析] 因為a2+1≥2a(當(dāng)且僅當(dāng)a=1時,等號成立),所以|PF1|+|PF2|≥|F1F2|.當(dāng)a≠1時,|PF1|+|PF2|>|F1F2|,此時動點P的軌跡是橢圓;當(dāng)a=1時,|PF1|+|PF2|=|F1F2|,此時動點P的軌跡是線段F1F2. 2.B [解
10、析] 由于直線y=kx+1過定點(0,1),要使直線與橢圓恒有公共點,只需定點(0,1)在橢圓上或橢圓內(nèi),所以m≥1.由于焦點在x軸上,所以0 11、AQ于點P,所以|PB|=|PQ|,又|AQ|=6,所以|PA|+|PB|=|AQ|=6,又|PA|+|PB|>|AB|,從而點P的軌跡是中心在原點,以A,B為焦點的橢圓,其中2a=6,2c=4,所以b2=9-4=5,所以橢圓方程為+=1.
7.B [解析] 依題有P,A,B,故OP=3,AB=4,所以S△APB=·|AB|·|OP|=×4×3=6.
8.B [解析] 由題意知橢圓的兩個焦點F1,F(xiàn)2分別是兩圓的圓心,且|PF1|+|PF2|=10,從而|PM|+|PN|的最小值為|PF1|+|PF2|-1-2=7.
9.A [解析] 直線l2:x=-1為拋物線y2=4x的準(zhǔn)線,由拋 12、物線的定義知,P到l2的距離等于P到拋物線的焦點F(1,0)的距離,故本題轉(zhuǎn)化為在拋物線y2=4x上找一個點P,使得P到點F(1,0)和直線l1的距離之和最小,最小值為F(1,0)到直線l1:4x-3y+6=0的距離,即dmin==2.
10.-1 [解析] 根據(jù)拋物線的定義知,點P到準(zhǔn)線的距離即點P到焦點F(1,0)的距離.因為焦點F到圓心(0,3)的距離為,所以點P到圓上點Q與到準(zhǔn)線距離之和的最小值為-1.
11.+=1 [解析] 由已知得+=8,即動點P到兩定點M (3,0),N(-3,0)的距離之和為常數(shù),且|PM|+|PN|>|MN|=6,所以動點P的軌跡是橢圓,且2a=8, 13、2c=6,所以橢圓方程為+=1.
12.(4,6) [解析] 過A作AA′垂直準(zhǔn)線交準(zhǔn)線于A′,由拋物線的定義知|AF|=|AA′|,而焦點恰為圓的圓心,所以△ABF的周長C=|AF|+|AB|+|BF|=|AA′|+|AB|+|BF|=|BA′|+|BF|,顯然2<|BA′|<4,所以4 14、令x=0,得y2-2by+4a-4=0,則y1+y2=2b,y1·y2=4a-4.所以|AB|===.設(shè)拋物線C的方程為y2=mx(m≠0),因為圓心M在拋物線C上,所以b2=ma,所以|AB|==.由此可得,當(dāng)m=4時,|AB|=4為定值.故存在一條拋物線y2=4x,使|AB|為定值4.
14.解:(1)由題意得e=,b==1,
即=,a2-c2=1,解得a=,
故橢圓C的方程為+y2=1.
(2)當(dāng)直線AB的斜率不存在時,設(shè)A(x0,y0),則B(x0,-y0),由k1+k2=2得 + = 2,得x0=-1,
當(dāng)直線AB的斜率存在時,設(shè)AB的方程為y=kx+b(b≠1),A(x 15、1,y1),B(x2,y2),
由 得(1+2k2)x2+4kbx+2b2-2=0,
則x1+x2=,x1·x2=.
∵k1+k2=2,∴+=2,∴=2,
即(2-2k)x2x1=(b-1)(x2+x1),∴(2-2k)(2b2-2)=(b-1)(-4kb),
∵b≠1,上式化簡得(1-k)(b+1)=-kb,∴k=b+1,
即y=kx+b=(b+1)x+b?b(x+1)=y(tǒng)-x,
故直線AB過定點(-1,-1).
15.解:(1)設(shè)拋物線方程為y2=ax(a>0),
又a=2×4=8,
∴拋物線方程為y2=8x.
(2)設(shè)A(x1,y1),B(x2,y2),
16、
C(x0,0).
由得y2-8ty-8=0,
則
由點C在以AB為直徑的圓上可得·=0.
又=(x1-x0,y1-0),=(x2-x0,y2-0),
∴(x1-x0)(x2-x0)+y1y2=0.
又x1=ty1+1,x2=ty2+1,
∴1-[t(y1+y2)+2]x0+x+y1y2=0,
∴x-(8t2+2)x0-7=0.(*)
若存在t,使得△ABC的內(nèi)心在x軸上,則kCA+kCB=0,
∴+=0,
即2ty1y2+(y1+y2)(1-x0)=0,
即2t(-8)+8t(1-x0)=0,
∴x0=-1.
結(jié)合(*)得,t=±.
專題限時集訓(xùn)(十五)B
17、【基礎(chǔ)演練】
1.解:(1)設(shè)A(x1,y1),B(x1,-y1),又知A1(-a,0),A2(a,0),則
直線A1A的方程為y=(x+a),①
直線A2B的方程為y=(x-a),②
由①②得y2=(x2-a2).③
由點A(x1,y1)在橢圓C0上,故+=1.
從而y=b2,代入③得
-=1(x<-a,y<0).
(2)證明:
設(shè)A′(x2,y2),由矩形ABCD與矩形A′B′C′D′的面積相等,得
4|x1||y1|=4|x2||y2|,
故xy=xy.
因為點A,A′均在橢圓上,所以
b2x=b2x,
由t1≠t2,知x1≠x2,所以x+x=a2.
從而 18、y+y=b2,
因此t+t=a2+b2為定值.
2.解:(1)根據(jù)拋物線的定義,曲線C是以(2,0)為焦點,x=-2為準(zhǔn)線的拋物線,所以p=4.
故曲線C的方程為y2=8x.
(2)設(shè)Q(-4,y0),過Q與曲線C相切的直線設(shè)為y-y0=k(x+4)(k≠0),
聯(lián)立得ky2-8y+8y0+32k=0.
Δ=64-4k(8y0+32k)=0,即4k2+y0k-2=0,
所以因為k1,k2是兩切線的斜率且滿足
k1=-2k2,所以解得
又因為k1·k2=-,所以y0=±2.
故存在點Q(-4,2)和(-4,-2),使得過點Q的兩直線與曲線C相切,且滿足k1+2k2=0.
3 19、.解:(1)由線段的垂直平分線的性質(zhì),得|MF2|=|MC|,
又|F1C|=4 ,∴|MF1|+|MC|=4 ,∴|MF1|+|MF2|=4 ,
∴ 動點M的軌跡是以F1,F(xiàn)2為焦點,長軸長為4 的橢圓.
由c=2,a=2 ,得b2=a2-c2=4,
∴動點M的軌跡方程為+=1.
(2)當(dāng)直線l的斜率不存在時,
求得A ,B,則k1+k2=4.
當(dāng)直線l的斜率存在時,設(shè)其方程為y+2=k(x+1),
由得(1+2k2)x2+4k(k-2)x+2k2-8k=0,
設(shè)A(x1,y1),B(x2,y2),則x1+x2=-,
x1x2=,
從而k1+k2=+==
2 20、k-(k-4)=4,
綜上,恒有k1+k2=4.
【提升訓(xùn)練】
4.解:(1)由解得P(0,0),Q(4,2).
因為∠BAP=∠BAQ,所以kAP+kAQ=0.
設(shè)A(m,y0),則+=0,
化簡得my0=2y0+m,
又y=m,聯(lián)立解得m=1或m=4.
因為AB平分∠PAQ,所以m=4不合適,故m=1.
(2)設(shè)P(x1,y1),Q(x2,y2),由得y2-2y+2n=0.
Δ=4(1-2n),y1+y2=2,y1y2=2n.
若存在常數(shù)m,當(dāng)n變化時,恒有∠BAP=∠BAQ,則由(1)知,只可能m=1.
當(dāng)m=1時,A(1,-1),∠BAP=∠BAQ等價于+ 21、=0,
即(y1+1)(2y2-2n-1)+(y2+1)(2y1-2n-1)=0,
即4y1y2=(2n-1)(y1+y2)+2(2n+1),
即8n=2(2n-1)+2(2n+1),此式恒成立.
也可以從kAP+kAQ=+==0恒成立來說明
所以,存在常數(shù)m=1,當(dāng)n變化時,恒有∠BAP=∠BAQ.
5.解:(1)設(shè)點P的坐標(biāo)為(x0,y0).
由題意,有+=1.?、?
由A(-a,0),B(a,0),得kAP=,kBP=.
由kAP·kBP=-,可得x=a2-2y,代入①并整理得(a2-2b2)y=0.由于y0≠0,故a2=2b2.于是e2==,所以橢圓的離心率e=.
( 22、2)證明:(方法一)
依題意,直線OP的方程為y=kx,
設(shè)點P的坐標(biāo)為(x0,y0).
由條件得消去y0并整理得
x=.②
由|AP|=|OA|,A(-a,0)及y0=kx0,得(x0+a)2+k2x=a2.整理得(1+k2)x+2ax0=0.而x0≠0,于是x0=,代入②,整理得(1+k2)2=4k2+4.由a>b>0,故(1+k2)2>4k2+4,即k2+1>4,因此k2>3,所以|k|>.
(方法二)依題意,直線OP的方程為y=kx,可設(shè)點P的坐標(biāo)為(x0,kx0).由點P在橢圓上,有+=1.因為a>b>0,kx0≠0,所以+<1,
即(1+k2)x<a2.③
由|AP|=|OA|,A(-a,0),得(x0+a)2+k2x=a2,整理得(1+k2)x+2ax0=0,于是x0=,代入③,得(1+k2)<a2,解得k2>3,所以|k|>.
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 語文部編版《端午粽》課件2
- 秋的思念最新課件
- 20套清新商務(wù)日歷圖表合集一課件
- 簡歷篩選技巧教學(xué)課件
- 《圖形創(chuàng)意設(shè)計》【初中美術(shù)教學(xué)課件】
- 部編新版人教版一年級下冊姓氏歌課件
- 西師大版六年級數(shù)學(xué)下冊總復(fù)習(xí)(5)---比和比例
- 藥物過敏反應(yīng)及處理流程ppt
- 人教版《道德與法治》九年級上冊42《凝聚法治共識》課件_參考
- 蘇教版二年級數(shù)學(xué)下冊第六單元--兩、三位數(shù)的加法和減法第7課時---練習(xí)七課件
- 蘇教版小學(xué)數(shù)學(xué)五年級下冊《方程的認(rèn)識》課件
- 國培計劃項目匯報模板
- 藏羚羊跪拜王春華
- 危重病人護(hù)理查房
- 中醫(yī)體質(zhì)分類及其辨證調(diào)護(hù)