【5年高考3年模擬】(新課標(biāo)專用)2021高考數(shù)學(xué)一輪復(fù)習(xí) 試題分類匯編 變量間的相關(guān)關(guān)系與統(tǒng)計(jì)案例(B)
優(yōu)質(zhì)文檔 優(yōu)質(zhì)人生11.4變量間的相關(guān)關(guān)系與統(tǒng)計(jì)案例考點(diǎn)一變量間的相關(guān)關(guān)系1.(2020湖北,4,5分)四名同學(xué)根據(jù)各自的樣本數(shù)據(jù)研究變量x,y之間的相關(guān)關(guān)系,并求得回歸直線方程,分別得到以下四個結(jié)論:y與x負(fù)相關(guān)且=2.347x-6.423;y與x負(fù)相關(guān)且=-3.476x+5.648;y與x正相關(guān)且=5.437x+8.493;y與x正相關(guān)且=-4.326x-4.578.其中一定不正確的結(jié)論的序號是()A.B.C.D.答案D2.(2020福建,11,5分)已知x與y之間的幾組數(shù)據(jù)如下表:x123456y021334假設(shè)根據(jù)上表數(shù)據(jù)所得線性回歸直線方程為=x+.若某同學(xué)根據(jù)上表中的前兩組數(shù)據(jù)(1,0)和(2,2)求得的直線方程為y=b'x+a',則以下結(jié)論正確的是()A.>b',>a'B.>b',<a'C.<b',>a'D.<b',<a'答案C3.(2020重慶,17,13分)從某居民區(qū)隨機(jī)抽取10個家庭,獲得第i個家庭的月收入xi(單位:千元)與月儲蓄yi(單位:千元)的數(shù)據(jù)資料,算得xi=80,yi=20,xiyi=184,=720.(1)求家庭的月儲蓄y對月收入x的線性回歸方程y=bx+a;(2)判斷變量x與y之間是正相關(guān)還是負(fù)相關(guān);(3)若該居民區(qū)某家庭月收入為7千元,預(yù)測該家庭的月儲蓄.附:線性回歸方程y=bx+a中,其中,為樣本平均值.線性回歸方程也可寫為=x+.解析(1)由題意知n=10,=xi=8,=yi=2,又lxx=-n=720-10×82=80,lxy=xiyi-n=184-10×8×2=24,由此得b=0.3,a=-b=2-0.3×8=-0.4,故所求回歸方程為y=0.3x-0.4.(2)由于變量y的值隨x的值增加而增加(b=0.3>0),故x與y之間是正相關(guān).(3)將x=7代入回歸方程可以預(yù)測該家庭的月儲蓄為y=0.3×7-0.4=1.7(千元).考點(diǎn)二獨(dú)立性檢驗(yàn)4.(2020福建,19,12分)某工廠有25周歲以上(含25周歲)工人300名,25周歲以下工人200名.為研究工人的日平均生產(chǎn)量是否與年齡有關(guān),現(xiàn)采用分層抽樣的方法,從中抽取了100名工人,先統(tǒng)計(jì)了他們某月的日平均生產(chǎn)件數(shù),然后按工人年齡在“25周歲以上(含25周歲)”和“25周歲以下”分為兩組,再將兩組工人的日平均生產(chǎn)件數(shù)分成5組:50,60),60,70),70,80),80,90),90,100分別加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖.(1)從樣本中日平均生產(chǎn)件數(shù)不足60件的工人中隨機(jī)抽取2人,求至少抽到一名“25周歲以下組”工人的概率;(2)規(guī)定日平均生產(chǎn)件數(shù)不少于80件者為“生產(chǎn)能手”,請你根據(jù)已知條件完成2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為“生產(chǎn)能手與工人所在的年齡組有關(guān)”?附:2=P(2k)0.1000.0500.0100.001k2.7063.8416.63510.828解析(1)由已知得,樣本中有25周歲以上組工人60名,25周歲以下組工人40名.所以,樣本中日平均生產(chǎn)件數(shù)不足60件的工人中,25周歲以上組工人有60×0.05=3(人),記為A1,A2,A3;25周歲以下組工人有40×0.05=2(人),記為B1,B2.從中隨機(jī)抽取2名工人,所有的可能結(jié)果共有10種,它們是(A1,A2),(A1,A3),(A2,A3),(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(B1,B2).其中,至少有1名“25周歲以下組”工人的可能結(jié)果共有7種,它們是(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(B1,B2).故所求的概率P=.(2)由頻率分布直方圖可知,在抽取的100名工人中,“25周歲以上組”中的生產(chǎn)能手有60×0.25=15(人),“25周歲以下組”中的生產(chǎn)能手有40×0.375=15(人),據(jù)此可得2×2列聯(lián)表如下:生產(chǎn)能手非生產(chǎn)能手合計(jì)25周歲以上組15456025周歲以下組152540合計(jì)3070100所以得K2=1.79.因?yàn)?.79<2.706,所以沒有90%的把握認(rèn)為“生產(chǎn)能手與工人所在的年齡組有關(guān)”. 4本資料來自網(wǎng)絡(luò)若有雷同概不負(fù)責(zé)