《江蘇省蘇州市第五中學2020屆高考數學 專題講練三 基本不等式及應用(無答案)》由會員分享,可在線閱讀,更多相關《江蘇省蘇州市第五中學2020屆高考數學 專題講練三 基本不等式及應用(無答案)(3頁珍藏版)》請在裝配圖網上搜索。
1、高三數學專題講座之三 基本不等式及應用
命題趨勢與復習策略:
基本不等式作為高考C級知識點,是每年高考必考的一個重要知識點,但它主要作為工具來用,而且主要用于求一些最值問題。
使用基本不等式時,務必要注意看清基本不等式成立的條件是否具備?尤其是要看清等號能否成立?在解答題中使用時,必須要交代等號成立的條件(即說明何時取等號)。
對于一些復雜的問題,使用基本不等式時往往要做以下一些工作:(1)分類討論;(2)等價變形(目標可以使用基本不等式);(3)消元化歸等。
真題回放:
(2020) 在平面直角坐標系中,過坐標原點的一條直線與函數的圖象交于、
兩點,則線段長的最小值是
2、 ▲ .
(2020) 17.(2020年江蘇省14分)如圖,建立平面直角坐標系,軸在地平面上,軸垂直于地平面,單位長度為1千米.某炮位于坐標原點.已知炮彈發(fā)射后的軌跡在方程表示的曲線上,其中與發(fā)射方向有關.炮的射程是指炮彈落地點的橫坐標.(1)求炮的最大射程;(2)設在第一象限有一飛行物(忽略其大?。?,其飛行高度為3.2千米,試問它的橫坐標不超過多少時,
炮彈可以擊中它?請說明理由.
(2020)
14. 若△的內角滿足,則的最小值是 .
19. 已知函數,其中e是自然對數的底數.
(1)證明:是R上的偶函數;
(2)若關于的不等式≤
3、在上恒成立,求實數的取值范圍;
(3)已知正數滿足:存在,使得成立. 試比較與的大小,并證明你的結論.
應用基本不等式求最值題型與解法歸類:
1.已知,則函數的最大值是________
同步練:函數的最小值等于________
2.雙曲線的離心率為2,則的最小值為________
3.若成等差數列,成等比數列,則的取值范圍是______
4.已知正實數滿足,則的最小值是________
5.若,且,則的最小值為_____________
6.設為實數,若,則的最大值是_______________
同步練:設實數滿足,則的取值范圍是___________
4、____
7.若三角形的三個內角的弧度數分別為,則的最小值是_____________
8.設,則的最小值等于______________
同步練:設正實數滿足,則的最小值是_________
9.若,則的最小值等于______________
10.若,且,則的最小值為______
11.已知關于的一元二次不等式的解集為,則的最小值是________________
同步練:已知關于的一元二次不等式的解集是,則
的最小值等于________
12.在中,分別是角的對邊,且
,則的最大值是______________
應用基本不等式求最值的應用
1.若對任意,不等式恒成立,則實數的最小值是______.
2.已知:x>y>0,且xy=1,若x2+y2≥a(x-y)恒成立,則實數a的取值范圍是_____.
同步練:設,若恒成立,則實數的最大值為______________
3.若,則的最小值是___________
4.已知為正實數,且滿足,若對任意滿足條件的,都有不等式
恒成立,則實數的取值范圍是__________