江蘇省白蒲中學(xué)2020高二數(shù)學(xué) 極限與導(dǎo)數(shù) 函數(shù)的單調(diào)性與極值教案 蘇教版
-
資源ID:110731938
資源大小:146.50KB
全文頁數(shù):5頁
- 資源格式: DOC
下載積分:10積分
快捷下載
會(huì)員登錄下載
微信登錄下載
微信掃一掃登錄
友情提示
2、PDF文件下載后,可能會(huì)被瀏覽器默認(rèn)打開,此種情況可以點(diǎn)擊瀏覽器菜單,保存網(wǎng)頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請(qǐng)使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預(yù)覽文檔經(jīng)過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標(biāo)題沒有明確說明有答案則都視為沒有答案,請(qǐng)知曉。
|
江蘇省白蒲中學(xué)2020高二數(shù)學(xué) 極限與導(dǎo)數(shù) 函數(shù)的單調(diào)性與極值教案 蘇教版
函數(shù)的單調(diào)性與極值教學(xué)目標(biāo):正確理解利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性的原理;掌握利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性的方法;教學(xué)重點(diǎn):利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性;教學(xué)難點(diǎn):利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性教學(xué)過程:一 引入:以前,我們用定義來判斷函數(shù)的單調(diào)性.在假設(shè)x1<x2的前提下,比較f(x1)<f(x2)與的大小,在函數(shù)y=f(x)比較復(fù)雜的情況下,比較f(x1)與f(x2)的大小并不很容易.如果利用導(dǎo)數(shù)來判斷函數(shù)的單調(diào)性就比較簡(jiǎn)單.二 新課講授 1 函數(shù)單調(diào)性 我們已經(jīng)知道,曲線y=f(x)的切線的斜率就是函數(shù)y=f(x)的導(dǎo)數(shù).從函數(shù)的圖像可以看到:在區(qū)間(2,)內(nèi),切線的斜率為正,函數(shù)y=f(x)的值隨著x的增大而增大,即>0時(shí),函數(shù)y=f(x) 在區(qū)間(2,)內(nèi)為增函數(shù);在區(qū)間(,2)內(nèi),切線的斜率為負(fù),函數(shù)y=f(x)的值隨著x的增大而減小,即0時(shí),函數(shù)y=f(x) 在區(qū)間(,2)內(nèi)為減函數(shù).定義:一般地,設(shè)函數(shù)y=f(x) 在某個(gè)區(qū)間內(nèi)有導(dǎo)數(shù),如果在這個(gè)區(qū)間內(nèi)>0,那么函數(shù)y=f(x) 在為這個(gè)區(qū)間內(nèi)的增函數(shù);,如果在這個(gè)區(qū)間內(nèi)<0,那么函數(shù)y=f(x) 在為這個(gè)區(qū)間內(nèi)的減函數(shù)。例1 確定函數(shù)在哪個(gè)區(qū)間內(nèi)是增函數(shù),哪個(gè)區(qū)間內(nèi)是減函數(shù)。y例2 確定函數(shù)的單調(diào)區(qū)間。x02 2 極大值與極小值觀察例2的圖可以看出,函數(shù)在X=0的函數(shù)值比它附近所有各點(diǎn)的函數(shù)值都大,我們說f(0)是函數(shù)的一個(gè)極大值;函數(shù)在X=2的函數(shù)值比它附近所有各點(diǎn)的函數(shù)值都小,我們說f(0)是函數(shù)的一個(gè)極小值。一般地,設(shè)函數(shù)y=f(x)在及其附近有定義,如果的值比附近所有各點(diǎn)的函數(shù)值都大,我們說f()是函數(shù)y=f(x)的一個(gè)極大值;如果的值比附近所有各點(diǎn)的函數(shù)值都小,我們說f()是函數(shù)y=f(x)的一個(gè)極小值。極大值與極小值統(tǒng)稱極值。在定義中,取得極值的點(diǎn)稱為極值點(diǎn),極值點(diǎn)是自變量的值,極值指的是函數(shù)值。請(qǐng)注意以下幾點(diǎn):()極值是一個(gè)局部概念。由定義,極值只是某個(gè)點(diǎn)的函數(shù)值與它附近點(diǎn)的函數(shù)值比較是最大或最小。并不意味著它在函數(shù)的整個(gè)的定義域內(nèi)最大或最小。()函數(shù)的極值不是唯一的。即一個(gè)函數(shù)在某區(qū)間上或定義域內(nèi)極大值或極小值可以不止一個(gè)。oaX1X2X3X4baxy()極大值與極小值之間無確定的大小關(guān)系。即一個(gè)函數(shù)的極大值未必大于極小值,如下圖所示,是極大值點(diǎn),是極小值點(diǎn),而>。()函數(shù)的極值點(diǎn)一定出現(xiàn)在區(qū)間的內(nèi)部,區(qū)間的端點(diǎn)不能成為極值點(diǎn)。而使函數(shù)取得最大值、最小值的點(diǎn)可能在區(qū)間的內(nèi)部,也可能在區(qū)間的端點(diǎn)。由上圖可以看出,在函數(shù)取得極值處,如果曲線有切線的話,則切線是水平的,從而有。但反過來不一定。如函數(shù),在處,曲線的切線是水平的,但這點(diǎn)的函數(shù)值既不比它附近的點(diǎn)的函數(shù)值大,也不比它附近的點(diǎn)的函數(shù)值小。假設(shè)使,那么在什么情況下是的極值點(diǎn)呢?oaX0baxyoaX0baxy 如上左圖所示,若是的極大值點(diǎn),則兩側(cè)附近點(diǎn)的函數(shù)值必須小于。因此,的左側(cè)附近只能是增函數(shù),即。的右側(cè)附近只能是減函數(shù),即,同理,如上右圖所示,若是極小值點(diǎn),則在的左側(cè)附近只能是減函數(shù),即,在的右側(cè)附近只能是增函數(shù),即,從而我們得出結(jié)論:若滿足,且在的兩側(cè)的導(dǎo)數(shù)異號(hào),則是的極值點(diǎn),是極值,并且如果在兩側(cè)滿足“左正右負(fù)”,則是的極大值點(diǎn),是極大值;如果在兩側(cè)滿足“左負(fù)右正”,則是的極小值點(diǎn),是極小值。xoy例3 求函數(shù)的極值。三 小結(jié)1求極值常按如下步驟: 確定函數(shù)的定義域; 求導(dǎo)數(shù); 求方程=0的根,這些根也稱為可能極值點(diǎn); 檢查在方程的根的左右兩側(cè)的符號(hào),確定極值點(diǎn)。(最好通過列表法)四 鞏固練習(xí) 1 確定下列函數(shù)的單調(diào)區(qū)間:(1) (2) 2 求下列函數(shù)的極值(1) (2)(3) (4)五 課堂作業(yè) 1 確定下列函數(shù)的單調(diào)區(qū)間:(1) (2)(3) (4) 2 求下列函數(shù)的極值(1) (2)(3) (4)(5) (6)