(通用版)2022年高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 第二層級 重點增分 專題八 空間位置關(guān)系的判斷與證明講義 理(普通生含解析)
《(通用版)2022年高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 第二層級 重點增分 專題八 空間位置關(guān)系的判斷與證明講義 理(普通生含解析)》由會員分享,可在線閱讀,更多相關(guān)《(通用版)2022年高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 第二層級 重點增分 專題八 空間位置關(guān)系的判斷與證明講義 理(普通生含解析)(15頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、(通用版)2022年高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 第二層級 重點增分 專題八 空間位置關(guān)系的判斷與證明講義 理(普通生,含解析) [全國卷3年考情分析] 年份 全國卷Ⅰ 全國卷Ⅱ 全國卷Ⅲ 2018 直線與平面所成的角、正方體的截面·T12 求異面直線所成的角·T9 面面垂直的證明·T19(1) 面面垂直的證明·T18(1) 線面垂直的證明·T20(1) 2017 面面垂直的證明·T18(1) 求異面直線所成的角·T10 圓錐、空間線線角的求解·T16 線面平行的證明·T19(1) 面面垂直的證明·T19(1) 2016 求異面直線所成的角·T11 空間中
2、線、面位置關(guān)系的判定與性質(zhì)·T14 線面平行的證明·T19(1) 面面垂直的證明·T18(1) 翻折問題、線面垂直的證明·T19(1) (1)高考對此部分的命題較為穩(wěn)定,一般為“一小一大”或“一大”,即一道選擇題(或填空題)和一道解答題或只考一道解答題. (2)選擇題一般在第9~11題的位置,填空題一般在第14題的位置,多考查線面位置關(guān)系的判斷,難度較?。? (3)解答題多出現(xiàn)在第18或19題的第一問的位置,考查空間中平行或垂直關(guān)系的證明,難度中等. 空間點、線、面的位置關(guān)系 [大穩(wěn)定] 1.已知α是一個平面,m,n是兩條直線,A是一個點,若m?α,n?α,且A
3、∈m,A∈α,則m,n的位置關(guān)系不可能是( ) A.垂直 B.相交 C.異面 D.平行 解析:選D 因為α是一個平面,m,n是兩條直線, A是一個點,m?α,n?α,且A∈m,A∈α, 所以n在平面α內(nèi),m與平面α相交, 且A是m和平面α相交的點, 所以m和n異面或相交,一定不平行. 2.已知直線m,l,平面α,β,且m⊥α,l?β,給出下列命題: ①若α∥β,則m⊥l;②若α⊥β,則m∥l; ③若m⊥l,則α⊥β;④若m∥l,則α⊥β. 其中正確的命題是( ) A.①④ B.③④ C.①② D.①③ 解析:選A 對于①,若α∥β,
4、m⊥α,則m⊥β,又l?β,所以m⊥l,故①正確,排除B.對于④,若m∥l,m⊥α,則l⊥α,又l?β,所以α⊥β.故④正確.故選A. 3.如圖,在正方形ABCD中,E,F(xiàn)分別是BC,CD的中點,G是EF的中點,現(xiàn)在沿AE,AF及EF把這個正方形折成一個空間圖形,使B,C,D三點重合,重合后的點記為H,那么,在這個空間圖形中必有( ) A.AG⊥平面EFH B.AH⊥平面EFH C.HF⊥平面AEF D.HG⊥平面AEF 解析:選B 根據(jù)折疊前、后AH⊥HE,AH⊥HF不變, 得AH⊥平面EFH,B正確; ∵過A只有一條直線與平面EFH垂直,∴A不正確; ∵AG⊥E
5、F,EF⊥GH,AG∩GH=G,∴EF⊥平面HAG,又EF?平面AEF,∴平面HAG⊥AEF,過H作直線垂直于平面AEF,一定在平面HAG內(nèi),∴C不正確; 由條件證不出HG⊥平面AEF,∴D不正確.故選B. 4.(2018·全國卷Ⅱ)在正方體ABCD-A1B1C1D1中,E為棱CC1的中點,則異面直線AE與CD所成角的正切值為( ) A. B. C. D. 解析:選C 如圖,連接BE,因為AB∥CD,所以AE與CD所成的角為∠EAB.在Rt△ABE中,設(shè)AB=2,則BE=,則tan ∠EAB==,所以異面直線AE與CD所成角的正切值為. [解題方略] 判斷與空間位置關(guān)系
6、有關(guān)命題真假的3種方法 (1)借助空間線面平行、面面平行、線面垂直、面面垂直的判定定理和性質(zhì)定理進行判斷. (2)借助空間幾何模型,如從長方體模型、四面體模型等模型中觀察線面位置關(guān)系,結(jié)合有關(guān)定理,進行肯定或否定. (3)借助于反證法,當(dāng)從正面入手較難時,可利用反證法,推出與題設(shè)或公認的結(jié)論相矛盾的命題,進而作出判斷. [小創(chuàng)新] 1.設(shè)l,m,n為三條不同的直線,其中m,n在平面α內(nèi),則“l(fā)⊥α”是“l(fā)⊥m且l⊥n”的( ) A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件 解析:選A 當(dāng)l⊥α?xí)r,l垂直于α內(nèi)的任意一條直線,由于m,n
7、?α,故“l(fā)⊥m且l⊥n”成立,反之,因為缺少m,n相交的條件,故不一定能推出“l(fā)⊥α”,故選A. 2.某折疊餐桌的使用步驟如圖所示,有如下檢查項目. 項目①:折疊狀態(tài)下(如圖1),檢查四條桌腿長相等; 項目②:打開過程中(如圖2),檢查OM=ON=O′M′=O′N′; 項目③:打開過程中(如圖2),檢查OK=OL=O′K′=O′L′; 項目④:打開后(如圖3),檢查∠1=∠2=∠3=∠4=90°; 項目⑤:打開后(如圖3),檢查AB=CD=A′B′=C′D′. 在檢查項目的組合中,可以判斷“桌子打開之后桌面與地面平行”的是( ) A.①②③⑤ B.②③④⑤ C.②
8、④⑤ D.③④⑤ 解析:選B A選項,項目②和項目③可推出項目①,若∠MON>∠M′O′N′,則MN較低,M′N′較高,所以不平行,錯誤;B選項,因為∠1=∠2=∠3=∠4=90°,所以平面ABCD∥平面A′B′C′D′,因為AB=A′B′,所以AA′平行于地面,由②③⑤知,O1O1′∥AA′∥平面MNN′M′,所以桌面平行于地面,故正確;C選項,由②④⑤得,OM=ON,O1A⊥AA′,O1′A′⊥AA′,AB=A′B′,所以AA′∥BB′,但O1A與O1′A′是否相等不確定,所以不確定O1O1′與BB′是否平行,又O1O1′∥MN,所以不確定BB′與MN是否平行,故錯誤;D選項,OK=
9、OL=O′K′=O′L′,所以AA′∥BB′,但不確定OM與ON,O′M′,O′N′的關(guān)系,所以無法判斷MN與地面的關(guān)系,故錯誤.綜上,選B. 3.(2018·全國卷Ⅰ)在長方體ABCD-A1B1C1D1中,AB=BC=2,AC1與平面BB1C1C所成的角為30°,則該長方體的體積為( ) A.8 B.6 C.8 D.8 解析:選C 如圖,連接AC1,BC1,AC.∵AB⊥平面BB1C1C, ∴∠AC1B為直線AC1與平面BB1C1C所成的角,∴∠AC1B=30°.又AB=BC=2,在Rt△ABC1中,AC1==4.在Rt△ACC1中,CC1===2, ∴V長方體=AB×
10、BC×CC1=2×2×2=8. 4.(2018·全國卷Ⅱ)已知圓錐的頂點為S,母線SA,SB所成角的余弦值為,SA與圓錐底面所成角為45°,若△SAB的面積為5,則該圓錐的側(cè)面積為________. 解析:如圖,∵SA與底面成45°角, ∴△SAO為等腰直角三角形. 設(shè)OA=r, 則SO=r,SA=SB=r. 在△SAB中,cos ∠ASB=, ∴sin ∠ASB=, ∴S△SAB=SA·SB·sin ∠ASB =×(r)2×=5, 解得r=2, ∴SA=r=4,即母線長l=4, ∴S圓錐側(cè)=πrl=π×2×4=40π. 答案:40π 空間平行、垂直關(guān)系的證
11、明 [析母題] [典例] 如圖,在四棱錐P-ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD,E和F分別是CD和PC的中點,求證: (1)PA⊥底面ABCD; (2)BE∥平面PAD; (3)平面BEF⊥平面PCD. [證明] (1)∵平面PAD⊥底面ABCD, 且PA垂直于這兩個平面的交線AD,PA?平面PAD, ∴PA⊥底面ABCD. (2)∵AB∥CD,CD=2AB,E為CD的中點, ∴AB∥DE,且AB=DE. ∴四邊形ABED為平行四邊形. ∴BE∥AD. 又∵BE?平面PAD,AD?平面PAD, ∴BE∥平面PA
12、D. (3)∵AB⊥AD,且四邊形ABED為平行四邊形. ∴BE⊥CD,AD⊥CD, 由(1)知PA⊥底面ABCD. ∴PA⊥CD. ∵PA∩AD=A,PA?平面PAD,AD?平面PAD, ∴CD⊥平面PAD,又PD?平面PAD, ∴CD⊥PD. ∵E和F分別是CD和PC的中點, ∴PD∥EF, ∴CD⊥EF. 又BE⊥CD且EF∩BE=E, ∴CD⊥平面BEF. 又CD?平面PCD, ∴平面BEF⊥平面PCD. [練子題] 1.在本例條件下,證明平面BEF⊥平面ABCD. 證明:如圖,連接AE,AC, 設(shè)AC∩BE=O,連接FO. ∵AB∥CD,CD
13、=2AB,且E為CD的中點, ∴AB綊CE. ∴四邊形ABCE為平行四邊形. ∴O為AC的中點,則FO綊PA, 又PA⊥平面ABCD, ∴FO⊥平面ABCD.又FO?平面BEF, ∴平面BEF⊥平面ABCD. 2.在本例條件下,若AB=BC,求證BE⊥平面PAC. 證明:如圖,連接AE,AC,設(shè)AC∩BE=O. ∵AB∥CD,CD=2AB,且E為CD的中點. ∴AB綊CE. 又∵AB=BC,∴四邊形ABCE為菱形, ∴BE⊥AC. 又∵PA⊥平面ABCD,BE?平面ABCD, ∴PA⊥BE. 又PA∩AC=A,PA?平面PAC,AC?平面PAC, ∴BE⊥平面P
14、AC. [解題方略] 1.直線、平面平行的判定及其性質(zhì) (1)線面平行的判定定理:a?α,b?α,a∥b?a∥α. (2)線面平行的性質(zhì)定理:a∥α,a?β,α∩β=b?a∥b. (3)面面平行的判定定理:a?β,b?β,a∩b=P,a∥α,b∥α?α∥β. (4)面面平行的性質(zhì)定理:α∥β,α∩γ=a,β∩γ=b?a∥b. 2.直線、平面垂直的判定及其性質(zhì) (1)線面垂直的判定定理:m?α,n?α,m∩n=P,l⊥m,l⊥n?l⊥α. (2)線面垂直的性質(zhì)定理:a⊥α,b⊥α?a∥b. (3)面面垂直的判定定理:a?β,a⊥α?α⊥β. (4)面面垂直的性質(zhì)定理:α
15、⊥β,α∩β=l,a?α,a⊥l?a⊥β. [多練強化] 1.(2019屆高三·鄭州模擬)如圖,四邊形ABCD與四邊形ADEF均為平行四邊形,M,N,G分別是AB,AD,EF的中點. 求證:(1)BE∥平面DMF; (2)平面BDE∥平面MNG. 證明:(1)如圖,連接AE,則AE必過DF與GN的交點O, 連接MO,則MO為△ABE的中位線,所以BE∥MO, 又BE?平面DMF,MO?平面DMF, 所以BE∥平面DMF. (2)因為N,G分別為平行四邊形ADEF的邊AD,EF的中點, 所以DE∥GN, 又DE?平面MNG,GN?平面MNG, 所以DE∥平面MNG. 又
16、M為AB的中點,N為AD的中點, 所以MN為△ABD的中位線,所以BD∥MN, 又BD?平面MNG,MN?平面MNG, 所以BD∥平面MNG, 又DE與BD為平面BDE內(nèi)的兩條相交直線, 所以平面BDE∥平面MNG. 2.如圖,在四棱錐P-ABCD中,平面PAB⊥平面ABCD,AD∥BC,PA⊥AB,CD⊥AD,BC=CD=AD. (1)求證:PA⊥CD. (2)求證:平面PBD⊥平面PAB. 證明:(1)因為平面PAB⊥平面ABCD, 平面PAB∩平面ABCD=AB, 又因為PA⊥AB, 所以PA⊥平面ABCD, 又CD?平面ABCD, 所以PA⊥CD. (2)
17、取AD的中點為E,連接BE, 由已知得,BC∥ED,且BC=ED, 所以四邊形BCDE是平行四邊形, 又CD⊥AD,BC=CD,所以四邊形BCDE是正方形, 連接CE,所以BD⊥CE. 又因為BC∥AE,BC=AE, 所以四邊形ABCE是平行四邊形, 所以CE∥AB,則BD⊥AB. 由(1)知PA⊥平面ABCD,所以PA⊥BD, 又因為PA∩AB=A,所以BD⊥平面PAB, 因為BD?平面PBD,所以平面PBD⊥平面PAB. 平面圖形中的折疊問題 [典例] (2019屆高三·湖北五校聯(lián)考)如圖①,在直角梯形ABCD中,∠ADC=90°,AB∥CD,AD=CD=A
18、B=2,E為AC的中點,將△ACD沿AC折起,使折起后的平面ACD與平面ABC垂直,如圖②.在圖②所示的幾何體D-ABC中. (1)求證:BC⊥平面ACD; (2)點F在棱CD上,且滿足AD∥平面BEF,求幾何體F-BCE的體積. [解] (1)證明:∵AC= =2, ∠BAC=∠ACD=45°,AB=4, ∴在△ABC中,BC2=AC2+AB2-2AC×AB×cos 45°=8, ∴AB2=AC2+BC2=16, ∴AC⊥BC, ∵平面ACD⊥平面ABC,平面ACD∩平面ABC=AC,BC?平面ABC, ∴BC⊥平面ACD. (2)∵AD∥平面BEF,AD?平面ACD
19、, 平面ACD∩平面BEF=EF, ∴AD∥EF, ∵E為AC的中點, ∴EF為△ACD的中位線, 由(1)知,VF-BCE=VB-CEF=×S△CEF×BC, S△CEF=S△ACD=××2×2=, ∴VF-BCE=××2=. [解題方略] 平面圖形折疊問題的求解方法 (1)解決與折疊有關(guān)的問題的關(guān)鍵是搞清折疊前后的變化量和不變量,一般情況下,線段的長度是不變量,而位置關(guān)系往往會發(fā)生變化,抓住不變量是解決問題的突破口. (2)在解決問題時,要綜合考慮折疊前后的圖形,既要分析折疊后的圖形,也要分析折疊前的圖形. [多練強化] 如圖①,在矩形ABCD中,AB=3,BC=
20、4,E,F(xiàn)分別在線段BC,AD上,EF∥AB,將矩形ABEF沿EF折起,記折起后的矩形為MNEF,且平面MNEF⊥平面ECDF,如圖②. (1)求證:NC∥平面MFD; (2)若EC=3,求證:ND⊥FC; (3)求四面體NEFD體積的最大值. 解:(1)證明:∵四邊形MNEF和四邊形EFDC都是矩形, ∴MN∥EF,EF∥CD,MN=EF=CD,∴MN綊CD. ∴四邊形MNCD是平行四邊形,∴NC∥MD. ∵NC?平面MFD,MD?平面MFD, ∴NC∥平面MFD. (2)證明:連接ED, ∵平面MNEF⊥平面ECDF,且NE⊥EF,平面MNEF∩平面ECDF=EF,
21、NE?平面MNEF,
∴NE⊥平面ECDF.
∵FC?平面ECDF,
∴FC⊥NE.
∵EC=CD,∴四邊形ECDF為正方形,∴FC⊥ED.
又∵ED∩NE=E,ED,NE?平面NED,
∴FC⊥平面NED.
∵ND?平面NED,∴ND⊥FC.
(3)設(shè)NE=x,則FD=EC=4-x,其中0 22、圖,在三棱錐A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,點E,F(xiàn)(E與A,D不重合)分別在棱AD,BD上,且EF⊥AD.
求證:(1)EF∥平面ABC;
(2)AD⊥AC.
[證明] (1)在平面ABD內(nèi),
因為AB⊥AD,EF⊥AD,所以EF∥AB,
又因為EF?平面ABC,AB?平面ABC,
所以EF∥平面ABC.
(2)因為平面ABD⊥平面BCD,
平面ABD∩平面BCD=BD,BC?平面BCD,BC⊥BD,
所以BC⊥平面ABD.
因為AD?平面ABD,所以BC⊥AD.
又AB⊥AD,BC∩AB=B,AB?平面ABC,
BC?平面ABC,所以A 23、D⊥平面ABC.
又因為AC?平面ABC,所以AD⊥AC.
[素養(yǎng)通路]
本題(1)證明線面平行的思路是轉(zhuǎn)化為證明線線平行,即證明EF與平面ABC內(nèi)的一條直線平行,從而得到EF∥平面ABC;(2)證明線線垂直可轉(zhuǎn)化為證明線面垂直,由平面ABD⊥平面BCD,根據(jù)面面垂直的性質(zhì)定理得BC⊥平面ABD,則可證明AD⊥平面ABC,再根據(jù)線面垂直的性質(zhì),得到AD⊥AC.考查了邏輯推理這一核心素養(yǎng).
一、選擇題
1.已知E,F(xiàn),G,H是空間四點,命題甲:E,F(xiàn),G,H 24、四點不共面,命題乙:直線EF和GH不相交,則甲是乙成立的( )
A.必要不充分條件 B.充分不必要條件
C.充要條件 D.既不充分也不必要條件
解析:選B 若E,F(xiàn),G,H四點不共面,則直線EF和GH肯定不相交,但直線EF和GH不相交,E,F(xiàn),G,H四點可以共面,例如EF∥GH,故甲是乙成立的充分不必要條件.
2.關(guān)于直線a,b及平面α,β,下列命題中正確的是( )
A.若a∥α,α∩β=b,則a∥b
B.若α⊥β,m∥α,則m⊥β
C.若a⊥α,a∥β,則α⊥β
D.若a∥α,b⊥a,則b⊥α
解析:選C A是錯誤的,因為a不一定在平面β內(nèi),所以a,b有可能 25、是異面直線;B是錯誤的,若α⊥β,m∥α,則m與β可能平行,可能相交,也可能線在面內(nèi),故B錯誤;C是正確的,由直線與平面垂直的判斷定理能得到C正確;D是錯誤的,直線與平面垂直,需直線與平面中的兩條相交直線垂直.
3.已知空間兩條不同的直線m,n和兩個不同的平面α,β,則下列命題中正確的是( )
A.若m∥α,n∥β,α∥β,則m∥n
B.若m∥α,n⊥β,α⊥β,則m∥n
C.若m⊥α,n∥β,α⊥β,則m⊥n
D.若m⊥α,n⊥β,α⊥β,則m⊥n
解析:選D 若m∥α,n∥β,α∥β,則m與n平行或異面,即A錯誤;若m∥α,n⊥β,α⊥β,則m與n相交或平行或異面,即B錯誤; 26、若m⊥α,n∥β,α⊥β,則m與n相交、平行或異面,即C錯誤,故選D.
4.如圖,在三棱錐P-ABC中,不能證明AP⊥BC的條件是( )
A.AP⊥PB,AP⊥PC
B.AP⊥PB,BC⊥PB
C.平面BPC⊥平面APC,BC⊥PC
D.AP⊥平面PBC
解析:選B A中,因為AP⊥PB,AP⊥PC,PB∩PC=P,所以AP⊥平面PBC.又BC?平面PBC,所以AP⊥BC,故A正確;C中,因為平面BPC⊥平面APC,平面BPC∩平面APC=PC,BC⊥PC,所以BC⊥平面APC.又AP?平面APC,所以AP⊥BC,故C正確;D中,由A知D正確;B中條件不能判斷出AP⊥BC,故選B 27、.
5.如圖,以等腰直角三角形ABC的斜邊BC上的高AD為折痕,把△ABD和△ACD折成互相垂直的兩個平面后,某學(xué)生得出下列四個結(jié)論:
①BD⊥AC;
②△BAC是等邊三角形;
③三棱錐D-ABC是正三棱錐;
④平面ADC⊥平面ABC.
其中正確的結(jié)論是( )
A.①②④ B.①②③
C.②③④ D.①③④
解析:選B 由題意知,BD⊥平面ADC,故BD⊥AC,①正確;AD為等腰直角三角形ABC的斜邊BC上的高,平面ABD⊥平面ACD,所以AB=AC=BC,△BAC是等邊三角形,②正確;易知DA=DB=DC,結(jié)合②知③正確;由①知④不正確.故選B.
6.(20 28、18·全國卷Ⅰ)已知正方體的棱長為1,每條棱所在直線與平面α所成的角都相等,則α截此正方體所得截面面積的最大值為( )
A. B.
C. D.
解析:選A 如圖所示,在正方體ABCD-A1B1C1D1中,平面AB1D1與棱A1A,A1B1,A1D1所成的角都相等,又正方體的其余棱都分別與A1A,A1B1,A1D1平行,故正方體ABCD-A1B1C1D1的每條棱所在直線與平面AB1D1所成的角都相等.如圖所示,取棱AB,BB1,B1C1,C1D1,D1D,DA的中點E,F(xiàn),G,H,M,N,則正六邊形EFGHMN所在平面與平面AB1D1平行且面積最大,此截面面積為S正六邊形EFGH 29、MN=6××××sin 60°=.故選A.
二、填空題
7.(2018·天津六校聯(lián)考)設(shè)a,b為不重合的兩條直線,α,β為不重合的兩個平面,給出下列命題:
①若a∥α且b∥α,則a∥b;
②若a⊥α且a⊥β,則α∥β;
③若α⊥β,則一定存在平面γ,使得γ⊥α,γ⊥β;
④若α⊥β,則一定存在直線l,使得l⊥α,l∥β.
其中真命題的序號是________.
解析:①中a與b也可能相交或異面,故不正確.
②垂直于同一直線的兩平面平行,正確.
③中存在γ,使得γ與α,β都垂直,正確.
④中只需直線l⊥α且l?β就可以,正確.
答案:②③④
8.若P為矩形ABCD 30、所在平面外一點,矩形對角線的交點為O,M為PB的中點,給出以下四個命題:①OM∥平面PCD;②OM∥平面PBC;③OM∥平面PDA;④OM∥平面PBA.其中正確的個數(shù)是________.
解析:由已知可得OM∥PD,∴OM∥平面PCD且OM∥平面PAD.故正確的只有①③.
答案:①③
9.如圖,∠ACB=90°,DA⊥平面ABC,AE⊥DB交DB于E,AF⊥DC交DC于F,且AD=AB=2,則三棱錐D-AEF 體積的最大值為________.
解析:因為DA⊥平面ABC,所以DA⊥BC,又BC⊥AC,DA∩AC=A,所以BC⊥平面ADC,所以BC⊥AF.又AF⊥CD,BC∩CD=C,所 31、以AF⊥平面DCB,所以AF⊥EF,AF⊥DB.又DB⊥AE,AE∩AF=A,所以DB⊥平面AEF,所以DE為三棱錐D-AEF的高.因為AE為等腰直角三角形ABD斜邊上的高,所以AE=,設(shè)AF=a,F(xiàn)E=b,則△AEF的面積S=ab≤×=×=(當(dāng)且僅當(dāng)a=b=1時等號成立),所以(VD-AEF)max=××=.
答案:
三、解答題
10.(2018·長春質(zhì)檢)如圖,在四棱錐P-ABCD中,底面ABCD為菱形,PA⊥平面ABCD,E為PD的中點.
(1)證明:PB∥平面ACE;
(2)設(shè)PA=1,AD=,PC=PD,求三棱錐P-ACE的體積.
解:(1)證明:連接BD交AC于點O,連 32、接OE.
在△PBD中,PE=DE,
BO=DO,所以PB∥OE.
又OE?平面ACE,PB?平面ACE,
所以PB∥平面ACE.
(2)由題意得AC=AD,
所以VP-ACE=VP-ACD=VP-ABCD
=×S?ABCD·PA
=××2××()2×1=.
11.如圖,在直三棱柱ABC-A1B1C1中,AB=AC=AA1=3,BC=2,D是BC的中點,F(xiàn)是CC1上一點.
(1)當(dāng)CF=2時,證明:B1F⊥平面ADF;
(2)若FD⊥B1D,求三棱錐B1-ADF的體積.
解:(1)證明:因為AB=AC,D是BC的中點,
所以AD⊥BC.
在直三棱柱ABC-A1B1C 33、1中,因為BB1⊥底面ABC,AD?底面ABC,所以AD⊥B1B.
因為BC∩B1B=B,所以AD⊥平面B1BCC1.
因為B1F?平面B1BCC1,所以AD⊥B1F.
在矩形B1BCC1中,因為C1F=CD=1,B1C1=CF=2,
所以Rt△DCF≌Rt△FC1B1,
所以∠CFD=∠C1B1F,所以∠B1FD=90°,
所以B1F⊥FD.
因為AD∩FD=D,所以B1F⊥平面ADF.
(2)由(1)知AD⊥平面B1DF,CD=1,AD=2,
在Rt△B1BD中,BD=CD=1,BB1=3,
所以B1D==.
因為FD⊥B1D,
所以Rt△CDF∽Rt△BB1D,
34、
所以=,即DF=×=,
所以VB1-ADF=VA-B1DF=S△B1DF×AD=××××2=.
12.(2018·石家莊摸底)如圖,在多面體ABCDPE中,四邊形ABCD和CDPE都是直角梯形,AB∥DC,PE∥DC,AD⊥DC,PD⊥平面ABCD,AB=PD=DA=2PE,CD=3PE,F(xiàn)是CE的中點.
(1)求證:BF∥平面ADP;
(2)已知O是BD的中點,求證:BD⊥平面AOF.
證明:(1)取PD的中點為G,連接FG,AG,
∵F是CE的中點,
∴FG是梯形CDPE的中位線,
∵CD=3PE,
∴FG=2PE,F(xiàn)G∥CD,
∵CD∥AB,AB=2PE,
∴AB∥FG,AB=FG,
即四邊形ABFG是平行四邊形,
∴BF∥AG,
又BF?平面ADP,AG?平面ADP,
∴BF∥平面ADP.
(2)延長AO交CD于M,連接BM,F(xiàn)M,
∵BA⊥AD,CD⊥DA,AB=AD,O為BD的中點,
∴四邊形ABMD是正方形,則BD⊥AM,MD=2PE.
∴MD綊FG.∴四邊形DMFG為平行四邊形.
∴FM∥PD,
∵PD⊥平面ABCD,∴FM⊥平面ABCD,
∴FM⊥BD,
∵AM∩FM=M,∴BD⊥平面AMF,
即BD⊥平面AOF.
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 6.煤礦安全生產(chǎn)科普知識競賽題含答案
- 2.煤礦爆破工技能鑒定試題含答案
- 3.爆破工培訓(xùn)考試試題含答案
- 2.煤礦安全監(jiān)察人員模擬考試題庫試卷含答案
- 3.金屬非金屬礦山安全管理人員(地下礦山)安全生產(chǎn)模擬考試題庫試卷含答案
- 4.煤礦特種作業(yè)人員井下電鉗工模擬考試題庫試卷含答案
- 1 煤礦安全生產(chǎn)及管理知識測試題庫及答案
- 2 各種煤礦安全考試試題含答案
- 1 煤礦安全檢查考試題
- 1 井下放炮員練習(xí)題含答案
- 2煤礦安全監(jiān)測工種技術(shù)比武題庫含解析
- 1 礦山應(yīng)急救援安全知識競賽試題
- 1 礦井泵工考試練習(xí)題含答案
- 2煤礦爆破工考試復(fù)習(xí)題含答案
- 1 各種煤礦安全考試試題含答案